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DEVELOPING THE FUNDAMENTAL THEOREM OF CALCULUS

1. INTRODUCTION

One of the po3t useful tools of mathematics is the ‘

Fundamental Theorem of Calculusr Although beginning

calculus students learn to use the Fundamentdl Theorem of -

Calculus to” £1nd the value of a definite 1ntegral they
are often left with only a man1pulat1ve tool and not a
thorough understandlng of the tool itself, 1ts proof, and
1ts numerous appllcatxons The purpose of this module 1s
to develop, by means of spme applications, some of the
basic concepts of the Fundamental Theorem of Calculus.

t B - e
- - T T M

. 2.5 THREE SIMILAR PROBLEMS

-
¢ N Ll

Con51der the three f0190w1ﬁgsprob1ems follow€d by
thelr solut1ons : :.

A .
5 «

EXAMPLE 1. F1nd the area of the rectangle that 15 15 feet

by 10 feet. .
’ ~
EXAMPLE 2. Find the (distance traveled by a car if its

velocity 15 10 feet per second and the length -
of time it travels i's 15 seconds. .

EXAMPLE 3. Find the work required to 1ift a 10-pound bag

of salt a distance of 15 feet.

SOLUTIONS. All thfee problems have common numerlcal quan-
tities, namely the 10 units and the 15 units.
Figure 1 and Table 1 show, the relationship
between these qu@ntltles and the solution of

each example. ’ .

It should be noted ih each pf thes& examples that the .
vertical quantity is a constant function of the horizontal
- . - - - +
quantity, i.e., in EXAMPLE 1, the width w is always 10 feet

-~

‘ \ 1

.
-
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‘ ‘; . . - ’ . o, ) -
@ i * B il 4 « .
) - . : - . .-
. ) for 0 < 2 < 15, in EXAMPLE 2; the’ Telocity v = 10 ft/sec ‘
1
for 0 < t < 15, and in EXAMPLE 3, the force f = 10 1b ¥or
0 < d<.15. T ' .
. \. - ‘., N N
. 10 - — L
& ' . N °
- . " '; ., s :
. - e My
) ‘ ° ¢
>‘ > . X
. 15 v
¢ . r —— e S e -
B ‘m—— - ——— - Figure™I7 “Solution to EXAMPLES I, 2, and 3.
, r
. . !
;o . TABLE'I , o
‘, . Solution to EXAMPLES 1, 2, and 3.
EXAM- Ho?izontal. Vertical ' 7 L
. PLE » Axis Axls - Formula ..Solution .
“ 1 {2=15ft | w=10ft A= Lxw | Area = 15x10 = 150 ft?« €]
2 |t=15sec | v=.0"ft/secd D=vxt | Dist. = 15x10 = 150 ft¢
3 jd=15% | f=101b W="fxd | Work = i15x 10 = 150 fti-lb
v L . » 3 ; Y
1] - “‘
, » - - -
Exercises

I. A car moving with a velocity of 10 ft/sec begins to' reduce its

speed unuForme and comes to rest in 15 seconds.

~

Explaln why the

that the bag is empty when it reaches the destined height. Explaun

why the product of tﬁe force and the distance does not produce the
work necessary to lift the bag. ‘

. ~ .

.o
ERIC .~/ - . v |

T . - -

. product of the velocity and time does not produce “the dastance it
. ’ c#?vels » ; .
e’ t
2. A 10-pound bag of salt is lifted up steadily to a height of I5 feet.
. The bag has a hole in it and salt leaks oul at a uniform rate, so

LXS
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- T -3.  THREE MORE SIMILAR PROBLEMS -~ ., - 4
. . - ? R PR S ’.' . . . v
- .3.1 %tatément of the Problems S . “ .
‘ Con51der the~{hre? followgpg problems: ° ) : .
e ! - . R
<L EXA“PLb 4 F d vhe area of a’ right trlangle whose base -
) . 1. : is 1: feet and whose altitude 1s 10 feet. .
EXAMPLENS. Find .the distance ;raJeled by a car whose . *

v

veldcity at time t 1is v(t) = [(-2/3)t + 10}
ft/seu when ‘it travels fTom t =01ttt =15
seLonds. (See Exercise 1 ) . ’ e

T Eixﬁblf'éf Flna the work done_;n lifting a.bag of salt.a .

* distance of 15 feet above the ground, assuming"
that the bag has a hole in 1t so zhaﬂﬁgt height

“d above the ground its welght {magnitgde of

* downward force)‘lg g(d) = [(-2/3)d + 10] 1b. . .

. . (See &xerc1se 2)) . . -

@

“Sblutlon of One of ‘the Problems ‘s

l

All threé\exambles (EXAHPLES 4, S, and ¢) have been
purpésely set up to pake xhelr solutlons similar. (Th1$

, m}ght not be noticeabde at i first glance ) Fo¥ EXAMBLE 4, N
) consider Figure 2 to did you in its sblution.
- . A .

5 . - -

\
. { |
, .
. .
- 4 |
RS . . 3,
’ ‘ -
] . ) .
b . v
- = ‘ ’
. 7 ,
[ . ,
\‘1 3 - P PR — e —— - - PR — P — [ — L Jap—
- ERIC . .- .
)




Since the area of a triangle = (1/’)(len"th o( bdse)(length
- ‘.of altitude), then the area = (1/ )LIS)(IU) 3 75 square
. feet. It should, be remembeled that “this, problem was solved
\ rapldl) by using an- approprlate formula.

a - . Notlce :Eﬁ: in Flgure 2, w LS not a, constant function
-7 _of 2. Since the line segment ing Figure 2 hasa slope of
- (10-0)/(0-15) = (-2/3) and a w-intercept of 10, then
¢ W(2) = (-2/3)2 + 10, where 0 < 2 < 15. For the functions
j \ in EXAMPLES 5 and 6, the:ir graphs.afe given in Figures 3
_ and 4 respeciively, where v(t) = (-2/3)t + 10 for 0 < t < 15
' s and g(d) = (-2/3)d + 10 for 0 < d < 15.

+

.Figure 3. Graph of function v. Figures4. Graph of function g.

4

. - o
The fog thht may-have hung over EXAMPLES 4, 5, and 6 T

should-now be clearing and one should begin to see the

51m11ar1ty between these three examp1e§ Tor all three

-

. examples we have the same functien and the 'same domaln, e
but each with different labels: . ) ' .
» EXAMPLE 4: w(&) =7(-2/3)% + 10, where 0 < 2 5 15
EXAMPLE 5: wv(t) = (-2/3)t + 10, where 0 < t < 15, »
EXAMPLE 6: g(d) = (-2/3)d + 10, where 0 < d < 157

. QUESTION: Since the solution to EXAMPLE 4 is 75 square
feet and each example has the same function (with d1fferent
labels), c3n we assume that EXAMPLES 5 and 6 will have the

same numerical solution but with different labels? 4

~ERIC . : - ..,
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To answer this question, we will\go back; and solve
EXAMPLE 4 by a differen; method, where we do, not use the
area of-a triangle formula. This will enable us to also *

solve the two other examples.

3.3 Approgimate Solutions of EXAMPLES 4,.5, and 6
w ¥

e "We will start by first apﬁroximatlng the area ef the

triangle 1n Figure 2

by 4 sum of areas of reétangles. o
First we divide [0,15] into 15 subintervals of equal length,

each of the form [1-1,1], where 1\= 1, 2,3, .. ., 15 as
shown in Figure 5. Over the ith subinterval, [1-1,1], we \
N ;
< L 1 1 1 1 1 1 i 1 N 1> i 1 L A i i "A
0 1 .2 ) 4 5 6 7 8 g 10 11 12 13 14 15
, Figure 5. Subdivision of [0, 15]. - .

construct the 1th rectangle whose '"length" 1s the length
of the 1th subinterval and whose "width" is determined by

the right endpoint {, as shown 1in Figure 6. The area of o
Aw 15t rectangle ‘
nd .t
2 rectangle !
ST0P 8
¥ ’ . )
i ’ d ’ . } .
rectangle ‘. *
*
# LN .
’ : s
i SR h »
o112 =1 15 L

~

iqure 8. ° R L~
Flgure_ - Approximation of area of triangile.

~

2

.

‘ . » )
the ith rectangle’1s the product of the width w(i) and the
length of the J4th subinterval, namely i - (i - 3)~= 1, or

L] L] .
. ,
,

- -
>
- . o

A

>
.

— el
~
'
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‘of EXAMPLE
have the¢ ap

an vV = (-2/3)i + 101(1), : :

. . /
o - ‘ -
4 . e ~
A . w(i)-l = [(-2/3)i_+ 10] (1) \ .
for i =1, 2, 3, .. ., 15. Since theye are 15 such Yec-
tangles, then the area of all of these 1s - '
SIS 1 15 7 . .
(B)  J w(id-1 = ] [(-2/3)i + 101(1), as w(i) = (-2/3)i + 10,
i=1 i=1 : .
4 . A5 ?

n

15 . 15 ’ &
I (-2/3)1s § (10)-1 |
=1 ~ 1=1 ‘ » .

- ~ .
.

. - 15 15 . B
=.(-2/3) L1+ (10) 1,

. i=1 . =1 .
. = (.2/3)%l§l%}élll + 10(15), . .. .-gb
‘n [ . ‘ a . (0 .

s Ji=nel) “ang V1= g, .
i:l 3 = ~
(C) = 70. : I - l . .

\ - . '
Hence, the area of the trlangle is approx1ma%e1y 70 squdre
feet.

’ )
Let's \go back and lodk‘&t-(A), (Bf, and (C) in tgrms
and Figures 3 and 3. Changing the labels, we
oximate distancé over the lth subinterval
represented . ' :

-
-

whete v(i) = ['-273)1 + 10] is the velocity over th‘e ith

value_over the ith subinterval.” In turn,

- .




’ A A -
' . ~ *? *
. : (
N . 15 - .. L
‘ (€") T ov(i)-1 = 70 ft. . .
, i=1 v N ‘ ~—r ‘.
y - 21-. ) . ) ’ ) « .
" Exercises D A °

3. State whay (A), (B), and (©) r;pregent with the appropriate labéls

when the width function w is reblaged,by weight function g of"

v
.

Example 6. . e
4. Approximate the area of the trifangle ih EXAMHLE 4 by d:v:d:ng the , !
/ -
|nterval {0, IST into 4S subintervals. Use the left endpoint
et

(: - I)(IA3l to determine the helght of each rectangle.
Sa. Interpreg~tﬁe results of Exercise 4 above in termé of EXAMPLE S.

+b. Interpret the results of Exercise 4 above in terms of EXAMPLE 6, o
. J N - . - , .

"« Since .70 (with the proper label) is an approx1mat10n
for the solutjon of EXANPLES 4, 5, and 6, iets solve all
of these problems by a more general method Let

£(x9 = (- 2/3)x + 10,%where 0 <X i 15§, ‘where function f ‘

D

represents any one of, the three funct1ons i EXAMPLES 4, 5.
.and (6. Generalizing Flgurc 5, we divide [0,15} 1into n . ’
’.9qual lehgth subfntervals\i;;;;%;ffjength 15/n) and denote i
the ith subintervaq by [(17T)- ny; (1)(15/g)1, for . .

. >,
1= 1,-2, 3, . . ., n as showa 1n Flgurg 7. . v

o A}
.

<1 Ly : L -1 __1_1_>
T -0, 15 N L . ‘ /}' N
2 LA (n-1) 5

- * ‘
Figure 7. -Subdivision of*!o IS] into n equal Iength sub:nterval{

" « N
IR e
) ) ] -~ / A‘:
&onslder then the product . N
) - fLQAS/MLAS/n), - , T
v . o~ . R N

+* . A " ’ ' N 7 »

- . . 2 / »

CSERIC , o -
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Adding up all n of these,produc;s,'wé then havé\ .

« 7 Vo

3
v
3

‘ -wh1é%,may be 1nterpretga in the following three ways:
3

For EXAMPLE 4, (D) 1s the area of the‘lgh rectangle
with width f[((1)(15/n)] and length (15/n), where the

width 1s determlned by the 1ght'end201nt (1)(1%%Yn),

of the ith sub1nterva1
-
For hXAMR}L 5, (D) 1s the approximate distance

"traveled over the 1th subinterval of time length (15/n)

and where the velocity, f[(;)(ls/n)], 19 constant’ over

‘the 1interval and 1t 1s determlned by the Yi1ght endpoint,

(1)(15/n)', of the 1th subinterval. s

For EXAMPLE 6,\(D) 1S " the appréi:;qte work done over
the 1th >ub1nter\al of distance (15/n) and where the -

forcc, f[(l)(lS/n)], 1s constant over the xnterval and

It 1s determln@g by the right eﬁd201nt ’(1)(15/n), of
‘the ith subinterval..

. . -
-

.

. e \ \, rd
n . & N m N ~ .
zl“(l)(ls/n)](IS/n)'= Y [€+2/3) (1) (15/n) + 10](15/n), .
1=1 i=1 .
) * ‘: e - - .
Tt Rt 105/m) 7+ 101 (157n) ‘
= . - i/n* + s .
>4 ~ .1'=1 . s * . )
- n, e U S
T ) [(-15(??}%2) + 150/n] ,
’ A 1 . * 1:1 . ‘. ) . ) .
. ) y L . 5 ‘ﬁ o .
L .= 150/t ] () e
. . . . ) g1:‘1 . ..
. s g O e ':f
# (150/n) [ ] (2 . .
¥, « 2 MR TS S SR I -
T T sty (@ L)y w(150/n) (n)
< ® ‘f-. oo . .o \" . .
I f0(1) (15/n)1(15/n) = -7s§‘g1 + 1/n) + 150. ;._ R
] . N ) "
. . . A 8 N
o / i - ] .
! 4:’ ) .* ’
L2

k3

.

X%
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; Notice that the expression in (F) is a function o _ﬂiz
¢ of n, the number of sublntervals of (0,15]. By letting n*
take on specific values in (F), we obtain var1ous approxi-
.mations to the solutions of EXAMPLES 4, 5, and 6. For the ‘
case that.n = 15, we obtain the numer1cal value of 70, the‘
. result we had previously seen. . "

Returning-to (F), we w111 aet n»w,'so that ¢

L4 A N [y N
(G) 11m 2 f[(1)(lS/n)](la/h) £.1m((-75)(1 + 1/n) + 1507,
. n-w.1=1 n»»

N %

it

(-75)(1) + 150,
= 75.

.

Notice that the 75§ is the same numerical value that we had
prev1ously ‘obtained ' (see page 4) for the area of the tri-
angle when we had used the specific formula for determining
the area of a triangle. Notice also, that we hdve now *

8 . answeyed the- question that was posed on page 4.

. -
8 <

,
. Exercises

\
‘ 6a. Find the value of the expression in (F) for the case that '
o . .
i ©n=25n=75; n= 300. , .
b. Why is each successive value of n a better approximation than
I = each 5revious value of n? )
k 7. The sum of products in _(F) was determined by using the r?é%t
/ ~ endpoint, (i){15/n), of each subinterval. .
* a. Determine a similar sum of products by using the left endpoint,
: . (i = 1)(15/n), of each Yubinterval. Simplify the result as much .
- . as' possible. R
- ) ha! ’ N
b. In your results of 7a above, let n = 25; n = 75; n = 300.
- N L) . >
c. In your results of 7a above, let-n+®. Then compare the resdit ' *
with (G).
- .
' : -
/Q P (- * *
9
() . ’L “
~ . y
- . - \ -
Q § 13 R
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8. As in Exercise 7 above, ’J‘
)

Determine a sum of products by using' the midpoint of each sub-

interval. Then simplify it as much as possible.

b. In'your results of 8a above, let n = 25; n = 75; n*= 300,

¢. In your results of 8a above, let n>® and compare the res&t with
EROF : ,
_L_ilf . ei
4. RIEMANN SUMS AND THINDEFINITE INTEGRAL ’
4.1 Definitaon of Riemann, Sum o

We have been looking at some special casés of what 1s
called a Riemann Sum and the definite integral. _Let us
now look at these more general concepts.

Let f be a fungtion defined on a c¢losed iﬁterval [a,b].

Let a = Xy _and b = \n and select (n-1) points X1, X$, Xz,

e e, xn 1 between X and x”4§o that a ;X< X < x2 <
Ce <X <* xn = b} These (n+1) points are said to

Eartltlon the 1nterval [a,b] into n subintervals, where

the 1th subinterval is denoted by [x;.10%;0s Qor 1 =1, 2,

3, . . - ,n. These n sub1nterﬁhls are said to form a
Partition P of [a,b]. See Figure 8. ‘- '
. € , - ~ .
a = ) v b
-t — — — —
X0 % X2 %3 XX o Me2%a T

Figure 8. A partition P of [a,b].

Dgnoting the length of the ith subihterval by 4x., we have

- (H) Ax. = x - Xx

°
For each value of i, seledk one point <4 from the ith sub-

ingerval, so that X501 264 ﬁ Xy We now*form the product

10

°



f(cl)-Ax1 ,

) -
/) and then the sum of ‘these n products,
4 - e ’ . !
N . +n .o
~ . A
« . (J) 1zlf(gl) N . .

This sum of products-(J) 1s called a Riemann Sum of the

, function f over ta,b] for the partitidn P and the ) oo
: "choice of ¢ It should be noted that a Riemann Sum -
depends upon ’ ‘ ’

. Y

1. the function f, . ‘
‘2. the closed interval La,b] over which £ 15 defined,
. 3. the partition P of la,b], where each subinterval .
' s ‘need not be of the same length, and o

4. the point <4 selected from each subinterval
[xy p0%, 0
4
Returning to the Riemann Sum in (E), we see that

the function f is given by f(x) = (-2/3)x + 10,
. [0,15]), is the closed interval over which f is

. defined, .
‘ . 3. the p;rtltion P'of [O:LS] consists of n sub-
. intervals of equal length, and . L )
. 4. the point ¢, = (1)(25/n) is the right endpai?t of

each subinterval. -
! . .

f

N i
. \\\\Exercuses

Set up and simplify a Riemann Sum for the function f(x) = 2x + 4

over [1,8], using a partition with subintervals Qf equal Ieﬁgth
and selecting the left endpoint of each subinterval for <

In'Exercise 9 abovs, let n take on various positive integer
alues.

\

. s . 8

d
erpret the numerical results of Exercises 9 and Y0 above in
terms of EXAMPLES 4, 5, and 6.

Aruitoxt provided by ERic:
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4.2 Definition of the.Definite Integral

In a ~partitlon P of {ay,b], the length of the longest'
ssulginte;val 1s called the norm of the partition P, and is
denoted by ||P]] . Fér the Riemann Sum 1n (E), since each
sub4'ni’erval 18 .of the same length, then [|P]] = (15/n).’

We

. Riemann,-or defainite 1ntegxra1. -
- AN ‘ [Ny ”

oW come to one of the main topics of this module, the

'
i .
» < B

Definition: . (1) Let f be a function defined over [a,b].
(2) Let P be a partition of [a,b] having n subintervals,
'R where Axi is the length of the ith subinterval and < s

any point in the 1th subinterval. (3) If there exists a

i

ﬁumber L such that ., v

- .

n a
lim flc.)*bx. = L, .
liell~0 ;El T .

"then L is called the Riemann Integral or the definite

- b
integral of f over [a,b] and is denoted by | f(x)dx; i.e., |
a .
- b
b n
. L = ff(x)dx = dim ] fle)bx, .
2 telj-0 i=1

Retarning to Riemann Sum (E) or (F) and the pacrtitlon
P associated with this Riemann Sum, we have |P|| = (15/n).
Since ||P}|+0 as n»=, we then have (G) which now can be
* written as ] y,

15 .
v ~ n
i (K) 75 = J [(-2/3)x + 101dx = lim § £[(1)(15/n)] (15/n).

0 - . n+e j=] .
s . . v
T Exercises te >
* IS
12, In the results of Exercise 9 above, lét n-®to find the value of
8
. - f (2x + 4)dx. ]
.4 5
v 13a. Write a Riemann Sum to approximate- the value f (3x + 5)dx.
: L = 2 12
h . v,
.
»
t 1 n
. 2 O
o . :
Q ) )
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v

Y

.o 5 . R
b. Find the valye of I (3x + 5)dx by using the results of 13a above.
2 )

doc, Interpret the<resGlts of 13b above, in terms of EXAMPLES &, 5,
and 6. .

-
< -

- ) 4
143, Find the value of I (!5x\+ I8)‘dx. -
~/

. '29

4
b.. Find the value of I _(x2 + 4ix + 5)dx.

i 3 .

-
v -

5. THE FUNDAMENTAL THEOREM OF .CALCULUS

a N \

QUESTIO : Does” one always have to eyaluate a definite
1ntegra1 by calculatlng a 1limit of Riemdnn Sums? The

answer to thls_questlon ‘is usually NO. For fupctions f
that are, contijfous over [a,b], the value of L f(;)dx can
often, but not /always, be determined by the Fundamental |,
Theorem oftCaltqus We will pre'sent this theorem in Sec-
tion 5.3, but before we look at it we will look at some of
its underlying principles in EXAMPLES 7 and 8.

.5.1 A Defifite Integral with a Variable Endpoint -

’

In (
consider

15 .
, we saw that j ((-2/3)x + 10)dx = 75. We now
more general form of 'this integral, namely

X .. .
J ((-2/3)t + 10)dt, .
we will assume that 0 < x:§ 15. ' Note that in (L),
have changed f(x) = (-2/3)x + 10 to .£(t) = (-2/3)t + 10;
ad we considered fb (-2/3)x + 10]dx, then we would have
used x for two d1fferent purposes, namely, (1) to denote
the right endpoint of (0,x), and (2) to denote the inde-
pendent variable of the function f. .

Y

Exercises . . .

15a. If x =0 in (L), what,is the value of.J [(-2/3)t + 10)de?.

0
; . x
b. f x =15 in (L), what is the value of J ((-2/73)t + 10)dt?
. 0 Y

”




- .
x
c. If x =10 in (L), what is the value of [ {(-2/3)t + 10)de?2
10 ‘”’WT\
°16. Interpret [ [(-2/3)t + 10]dt in terms of EXAMPLES 4, 5, and 6.
0 . >

”
By letting x4 0 < x < 15, take on various values 1in
(L), we obtain’one and only one definite integral, so that,
we can consider the expression in (L) to be a function of

. X, namely : .

X

™M " F(x) =J [(-2/3)t + 10)dt ,
‘ 0

where 0 < x < 15 and 0 < t < x.

»
5.2 Antiderivatjves and the Definite Integral

EXAMPLE 7. Find another representation of the function F
that 1s represented in (L)-and (M). -

Solution: Since F(x),1s a definite integral with 10h€r

limit 0 and upper limit x, we will find 1ts value as a

limit of Riemann Sums. By dividing [0,x] into n equal

length subintervals, then &xy = x/n and the 1th subinterval
is- [(1 - 1)(x/n),(1)(x/n)), for i = ¥, 2, . . ., n. ’
Selecting the right endpoigt of each subinterval as Ci»

4 then ¢; = (r)(x/n). See Figure 9.
r‘ 1]
10 f ( ) 'Y
&
! S
/
- t » —>
) o me X3

’

"
Figure 9. A partition of [0, x].

14
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= <

For this partition P of.[0,x] and for %(t) = [(-2/3)t + 10],
- the Riemann Sum 1s

M ’

n * ..
: 1§1£(°1J'A*1 . E(-z/s)(cl) + 10) (dx)), .

n
f e~

1

n
. = le(-2/3)(i-x/n) +10)1(x/n), *
1=

‘

L 2,22 ’
= ,le(-Zx 73n7) (1) + (10x/ny ()],
1= )

<, 5 n n
= (:2x7/3n7) | [ (1)) + (1ox/n)| ¥ (1),
Cli=l 1=1
. (_éxz/snz)[(n)€?+l)} + (10x/n) (n),

N A Y
(N) = (-x2/3)(1 + 1/n) "+ 10x, A

where tht value of the Riemann Sum in (N) is a function of
both x (the right endpoint of [0,x]) and n (the number of

equal lengthed subintervals of [0,x])}. Since ||P|| = (x/n)-0
‘ as n»~, then )
. x .
F(x) =J [(-2/3)t + 10]dt,
b \ »
' 0
]
— = lim f(c.) ax,,
' . . ftPll>0 221 47 F
= Ln((-x%/3)(1 + U/n) ¢ 10k, - . ,
n-»oo ) e

-

|
= (-x2/3)(1) + 10x,
= (-x2(3) + 10x. -

. ~ Hence, anothen representation of the function F is
(P) F(x) = (-x2/3) + 10x5 -
) Upon invesiigatihg some of the properties of this
. function F in (P) and the given function f;, we see that .
15
h s 'S .
B 1 1]
Q +J * .

“ERIC : ‘

.
. .
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) Ex), s glCxT/3) ¢ 10a) = (-2/3)x ¢ 10, . |

)Y F(t) = (-2/3)ts+ 10, or £(x) = (-2/3)x + 10.

”» -
- s M . - “
Here we ses an extremely important concept, namely thﬁt
s F€x) = '(-x"/3) + 10x 1s an antiderivative of |
( e f(x) = C23)x v 105 e, « T e
M T LFUX) = f£(x),when, F(x) = ( [(-2/3)t + 10]dt.

, b )
Note* Remember this fact when we investigate the Funda-
mental Theorem of Calculus in Section 5.3,

.

7 <

Exercises
' As in EXAMPLE 7, find another representation of the function F

: "in (M) by letting ¢ = (i - 1)(x/n), the left endpoint of each

subinterval. Compare this result with (P).

As in EXAMPLE 7, find another representation of the function F

18.
in (M) by the following method:
a. In Figure 9, let G(x) = the area of the trapezoid whose two
. parallel sides are 10 and (-2/3)x + 10 units in length and whose
base is x units in length.
" b. Use the area formula for a trapezoid to determine G(x).
1

Compare G{x) with the results of (P) in EXAMPLE 7.
il

As in EXAMPLE 7, give another justification of the function F

19.
in (P) on the basis that velocity is the derivative of a posi-
tion function. ‘ .
o Before looking at the siatemént of the Fundamental
Theorem of Calculus, we will consider another example.
EXAMPLE 8. Find the distance traveled from t = 2 to t = 8
seconds by a car whose veglocity is
. v(t) = (-2/3)t + 10 ft/sec.
" -
' 16
4 r'i "
) . . 7 ’
[l{TC . 4"50 . ‘ o
- < . 3

o




R A Fuiiext provided by ERIC
2 il

. " Solution: As‘a gefiniue ihteg;al, thrs distance can be
represented as f [(-2/3)t + 101dt: (Take a _moment to con-

2 X .
sider why this 1s s0.) Since F(xn).= j [(-2/3)t + 10]dt 1s
K 0 .
sthe distance the car travels over [0,x}, then
M 8 ’ . ) »
. 1) F(8) » f [(-2/3)t % 10)dt 1s the distance 1t
o - A ] 5

travels over (0,8}, and

¢
N

E(2) = J'-[(-Z/‘:S)t + 10]dt 1s the distance 1t
0

+ ,°

.
€y
—

0

travels over [0,2].

Since we are concerned with the distance traveled over
[2,8), we then seek F(8) - Ff2). That 1s,

‘s {8 ' 4/ "
- l, [(-2/3)t +101dt = r-‘(E) - F(ﬁz’l,

v - ‘ 2
But ip (P) we saw that F(x) = (-x°/3) + 10x, so that

v

L

2
1

= 40 feet. . T .
. . . -
5.3 Statement of the Fundamental Theorem of Calculus

LY
We are now ready to state the Fundamental Theorem of-

Calculus. ~ .
< .~ " _ -
FUNDAMENTAL THEORBM OF CALCULUS RS -
N If (1) function ¥ is continuous over [a,b], and e; . -

i -

(2) F(x) is any antiderivative of f(x) over {a,b],

then | . . : . : , )
: b .

* j f(x)dx = F(b) - F(a). .

a,

£

8 ‘ ' .
J [(-2/3)t + 10)dt = [(-82/3)+10(8)]3- [(-22/3)+10(2)];

an




L .
. . o .
. - P S : R
* ‘ - S "f‘ \". i s
‘Returnmg to EXAMPLE 8, we see .that wé h'we actglly s L
usedsthe Fundamental Theorem of Calca'fuswlg t’h‘e so-lutxon < T
© of the problen, -as’ * - . ';éf' e, gy ““}J A
At - "Jgtrfﬁlﬂﬁiy’ o
' ) 1) v(t) = (-Z/S)t + 10 (or, f( ~2/"§jxe ¥ 1@ 1s ‘
scontinuous over [2,8] 4s func&%%e“mnﬁgo‘n
~ f) 157a linear-functién. ~ oy

e

2) B(t) = (-t2/3) s 10t (or,, F(x) = ('—;\xf_/’3)“‘3‘ $o:

~

.. 1s an antiderivative of v(t) = (-2/‘&'{a+‘f
f(x) = (-2/3)x + 10) over [2,8]. . SRS

_f(x) = (-2/3) ) o .‘f*t”’s,e\;:,:,, -

Hence, the two parts of the hypothe51s of the theox’eya’,hgye LR

. e v ¥ . .

B s >

A
) 8 ‘ﬁzqsi A a
(@) f;l(-g/S)t f101de = F(8) - F(2) = of fa ‘

been satisfied. 1In conclusion then,

the same result that we had previously obtained. O

o
Exercises

20. in the second hypothesis of the Fundamental Theorem of Calculus,

© it s stated that F(x) is any antiderivative of £{x) over.[a, by - B

N -

a. Eva}uate (Q) using (-t /3 + 10t + 5) as an antiderivative. \’ » -

N b= ﬁvalua;e (Q) using (-t /3 + lOt S 4/3) as an antiderﬁ!’tlve. v

s ¢. Evaluate (Q) using (-t2/3 + 10t + k) as an antiderivative, .
p )

where k is any constant. ’ .

Return to item (K) and Exercise 14 and evaluate each of thgse : . ;

definite integrals by using the Fundamental .Theorem of Calculus.

22. Use'the Fundamental Theorem of Calculus to evaluate each of the

. . following definite integrals:

5 2
a. j (x® + 2x + 1)dx .
¢ 2 . . - ' 8 :.h

b js(xé)dx + 2£:(x)dx +£:(|)dx

- > ’ - T L,
- o . i

FRIC . . " 3 S :
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23.

24,

27.

“‘

“satisfied. - '

25 . .
I (x + I)dx.
2 i h

.

Explain why the Fundamental Theorem of Calculus cannot be used
to e\wluate the folloJung integral: s . |

|
6 : - \
'f (1/x%)dx. g
-1

WARNING: Do not attempt to use the E‘undamental Theorem of

Calculus unles®all conditions of the hypothesis have been

: o
Evaluate each of the following by using the Fundamental Theorem
- ‘

C

of Calculus: i ' »

4 2 )
f (-3x“ + 5x = 7)dx
-1

7
L(I/x3,+ x-z)dx_ R

Find the area of the reglon bound by the x-axis and the

6-;<-x2.

. 8 2
b. f (x + 1/x%)dx°®
4 -T .

9
d. f [(x% +0)/x%)dx. ’

parabpla y =

Let v(t) = t2 - 3t + 2 be the velocity function of a“cd]r when
Ogt f_‘?,‘ﬁhere the velocity is measured im ft/sec and the

is measured in terms of seconds.
WARNING :

time t Find <the distance it

travels. what does a negative velocity indicate?

A bag of salt originally weighing 144 Pounds is lifted upward,

The salt leaks out uniformly at a rate so that half of the salt

.

is lost when the bag has been lifted 18 feet, Find the work .

done in lifting the-bag this distance. : ot

-




O

Aruitoxt provided by Eic:

3: (A") g(i)+1 = [(-2/3)i + 10](1) is the approximate work done

ERIC.

6. CONCLUSION

The Fundamenta& Theorem of Calculus has a long and

.fasc1nat1ng hlStOTY behind it, Prior to its development ;

gathematigians worked for centurles thh the ,derivative,
the anriderivative, and sums of products . Isaac Barrow
(légggfégg), a teacher of Isaac Néwton (1642-1727), dis-
covered and proved the Fundamental Theorem of Calculus,
although his method and terms ware quite different from
those used in this module. Using Barrow's results, bogh
Newton and Gottfriéd Leibnitz (1646-1716), working inde-
penden}ly of each other, developed many of the concepts
of calgulus, although much ¢f the calculus that we know
and use today is attributed to Georg B. Riemann (1826-
1866). _ )
’ In this module, we have solved area, distance,.énd

wory problems by the'Fundamental Theorem of Calculus. It
can also bg used to.solve problems dealing with the volume

LN

of a solid eof revolutlon, arc length, moments, center of
gravity, hydrostatic force, product cost, growth (or decay)
of a substance, etc. Good luck on your usag@ of this
remarkable tool!

5

. 3

_ . 7. ANSWERS TO EXERCISES, '

4

I. The formula, distance = velociéy x time, can be used %iiy when

the vefocity is a constant, which is not the case here>

2. The formula, work = force x distance, can be used only when the

force is a constant, which is not the case here.

. . -

over the ith subinterval, where g(i) is the onstant force over
the ith subinterval and 1 represent 1 foot, the‘length of the

ith subinterval.
\

- -

(8" 15
! Z g(i)+1 répresents an approxlmatlon of the work ¢dne 'Q//
Tis lifting the bag of salt a distance of 15 feét.

. . 20




. 4,
Sa.
2 b-
ba.
b.
- 7a.
. Y
b.
c.
. -
B 8a.
»
b.
£74
. A
. 3
Lon et . i *
‘o \)‘ -t
Hmiiﬁﬁﬁﬂ . -

- . howd
- .
(C'") 70 represents the numerical approximation of the work
done in terms of foot-pounds.
The length of each subinterval is (15/45) = 1/3 units, so that
the deft endpoint is §i - 1)(1/3), for i =1, 253, . . . , 45, -
The area of the ith rectangle is w((i "l)(l/3)](‘/3)u _The ' .
.area of the 45 rectangles is . “
hs :
Tl - DODIO73) = % 273 saq. fr. - .
i=1 ’
The approxfmqée distance travelgd is 76 2/3 Feet. ) ,
The approximate work done is J6 2/3 foot-pounds.
If n =25, then (-75)(1 + 1/25) + 150 =
If n =75, then (-75)(1 + 1/25) + 150 =ph4. . '
'f 0 = 300, then (g5)(1 + 1/300) + 150"= 74 3/4. ~
In terms of the area of the triangle, as n bécomés larger, there
are more rectangles benng used, with these rectangles forming a
closer fit" to the shape of the triangle.
n
106G - 1(s/m)1(15/n) = 7 (- -2/3) (i =.1) (15/n) + 101 (15/n), -
=1 ) R i=] ‘ \
=75 + 75/n.
1f n =25, then 78. ' .7
If n =75, then 76.
if n= 300, then 75 1/4. .- e o
A12[7S + 7S/n] = 75, the same numerncal value that was obtained
in (6)., : ‘ ’ v L
Since the midpoint of the ith subinterval is given by :
(G - 1)Us/m) + (1) (15/n)1/2, or, (i)(15/n) - (15/2n), so
5 fL()(15/n) - (15/2n)1(15/n), which = 75 for all values of n.
i=1 i ¢
If n = 25, then 75. . *
If n =75, then 75. . ) @ ' ~".
1f n = 300, then 75. ' ) 21 ’
". N ’
4 . T M
2 . -
()l-
\l e .har‘ .
- v o~ ” * ‘




N

¢t N - . _ .
‘7‘0 o . . . - « . .
v .

.

[ >,

c. 1im(75) = 75, the same numerical value that was obtained in (G).
(1 3ea

9. Since the length of each subinterval is -(8-1)/n = 7/n, then

,Axi = 7/n and the left &ndpoint is ¢, = '+ (i ~ 1)(7/n), so that

FO + (- 1)(@/n))(7/n) = 4901 - 1/n) + 2.

¥
-‘EMD
-
.

100 # 1% = 7, then 49(1 - 1/7) + uz 84,
" 1fn =49, then 90,

etc.

. Consider the graph of f(x) 2/2x + lo over® [1, 8.]
9 EXAMPLE L: If n = 7, then the area of the trapezoud in the graph

> “is approximatety 84 squ‘are units. d .
. EXAHPL?S' I1fn=17, then fromt =1 to t = econds, 84 feet
‘. e
. is the approximate dlstance traveled by a car whose velocity is
given by v(t) = 2t + 4 feet/sec. ' e’
-7 . EXAMPLE 6: "if n =7, then fromd = ] to d = 8.f‘eet, 84 foot-
A 4 Il . * s M '
U Al pounds is the agproximate work done in 1ifting a bag of salt t .
. whose weight at dlstance d fe_given by gl{d) = 2d + 4,
o K & A RO %, .
}Z. 8 B oo Yor o — . b/ N
J(Zx f0dx = cdin T EQ 4 () (7R (il
-9 . ]19ﬁ+e-i=1 - ~.;;¢\; ‘
) R )
= 1im Z F1 + s ~~l)(7/n)](7/n‘)
e N i _‘ . 8 - - ) '
) a lhh[kf)(l -,—),' +'lo2], '-. 0 = ! ’ ' “
4 . n—yco n . - . B

N .. n " RIN) .
© \ T a N 461‘, .-, ’ -, " ) °
’ R TH RN <, -

13a. Partition '[2‘,5] into n equal \engjghed“sutiintérvals, and select

s € 35 “the right endpoint. %hén Ax = 3/n and c; =2+ i(3/n) . ¢ .
s T« o fori=1,2,3, ... ,n A Rlemann “Sum for f(x) = 3x +,5,
3 ) ' over [2,5] is I ' -
. ) ) . <
- n - ' ‘
Effz £ () (3/m1(3/m) = 7/2)(1 + i/n) + 33.
:;‘L:, T ] -
- t (3x + 5)dx = 1im ({27/2) (3 + 1/8) + 33] = 93/2"
L LT - o .
) . 22
- . . . -
. 4 ‘
. o f . v N
- an - .
P ‘vO - [ 4 >
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° 0

-
.

c. EXAMPLE 5: 93/2 sq. units is the area of the region bound by
the lines x = 2, x = 5, y = 0 and y = 3x + 5.
EXAMPLE 5: 93/2 feet is the distance traveled by a car wiidose
. « . velocity is v(t) =3t + § feet/second when 2 < t-< 5. R
EXAMPLE\S 93/2 foot- pOUnds is the work.done in lifting a bag
\ of salt™from d' = 2 feet to d =*§ feet, where the weight of the
salt is g(dz = 3d + 5, ¢

14, Using the right endpoint of .each equal lengthed, subinterval,

a. 4 n '
f (5x + 18)dx = lim [ F[-2 + (i)(6/n)](6/n)

-2 nwo =] ¢

-
]

1im(90) (1 + 1/n) + 48 = 138.
N0
\

b. Using the right endpoint of each equal lengthed'suBinterval, 'n
4 5 n
s I (x" + 4x + 5)dx = lim 'Z f{=1 + (i1)(5/n)1(5/n),
-] * noo (j=| .
. = 1im[{125/6} (1+1/n) (2+1/n) + 25(1+1/n) + L0O] ° .
EY ) o . .
. * = 230/3.
. 15a. 0, as Axi =0 for all values of i.
: b 75, by (&), T L
“ . 10 -
. ‘I [(-2/3)¢ + lo]dt = lim Z [(-273) (i )(lO/n) + 10)J(10/n), : .
. AT e §=] |
» .
’ ! - _ = Lim[(-100/3) (1 + 1/n) + 100]
o i « . P ) N B
H
R § = 200/3. . ‘.
." ¢ - . - -
‘ 16. EXAMPLE h: 200/3 is the area of the region bound by the linesl
x =0, xiP 10, vy =0, and y = (-2/3)x + 10. \
EXAMPLE 5 200/3 is the distance traveled by a car whose
velocity is v(t) = (=2/3)t + 10 feet/second when 0 <t <o, .

N _EYAMPLE 6: 200/3 is the work done in Ilftlng a bag “of splt from
ﬁﬂux”” d=0tod=10 and where the weight of the-salt is glven by
.l o(d) & (-2/3)d + 10, . ,

e . L3




-
—_
x
~
]

X
J ((-2/3)t + 10]dt
0

n
< 1im § [(-2/3)(i --1)(x/n) + 10] (x/n)

o (=] .
Vo . . \
= Vim ((-x2/3) () + i/n) + (2x%/3n) + 10x]
n<o

(-x2/3) + 10x, which is the same as (P).

18a. : '

¢

10 » ength = (-2/3)x + 10

P————————x > ‘\‘
X
.b. G(x) = (172)(x) (10 + (-2/3)x + 10], or, G(x) = (-x2/3) + 10x,

which is the same as (P).

-

19. In (M), let f(t) = (-2/3)t + 10 be the velocity of a car over

_" [0,x]. Since the velocity is the derivative of a position

:"‘ function, say F(x} = (-x2/3).+ 10x, where F'(x) = (-2/3)x + 10
which = f(x). . | V4
20. a., b., and c. F(8) - F(2) = 40.
. 21 K). (IS . . -,
J [(-2/3)x + 10]dx = F(15) - F(0), where F(x) = (-x"/3) + 10x,
= 75.
(1ha) (4 , )
, I (5x + 18)dx = F(4) - F(-2), where F(x) = (5x°/2) + 18x,
-2
= 138.
i
(14p.) b 2 ' 3 2
I (x“ + bx + S)dx = F(4) - F(-1), where F(x) = x?/3 + 2x° + 5x,
. -1
. = LTt Tt s s sew 230/3. BN

22a. 63; b. 63; c. 63; 4. (27/2)%; e. 677/%.

I3 -




The function f(x) = l/x2 is not continuous over [-1,6].

S e D
a. =62 1/2.
b. 24 1/8. ¢
c. Did you heed the WARNING in Exercise 23 above?
d. 8o/9. .

2 N
Area = I (6 - x - xz)dx = 125/6 square units.

-3
12’ 2 2 R
Distance = L (t° - 3t + 2)dt + f -(t° - 3t + 2)dt ,‘
. 1
3, ) y
+L(t - 3t + 2)dt = 11/6.
Since slope = (144 - 72)/(0 - 18) = -4 and the vertical ,

intercept is 144, then g(x) = -Ux + 14k,

Work = L (-bx?+ 1hb)dx = 1944 fe-Ibs.

8. MODEL EXAM

Set up-and simplify a Riemann Sum to approximate the
area of the region bound by the lines x'= 2, x = 5,
y-= 0, and y = 2x + 3. ’

°

In the simplified Riemann Sum in la. abbve, let n+w.

°

’\

Set up the definite integral that wi%} yieid the area
of the region in la. aboye. - . ’ o

Evaluate the definite integral in 1lc. above by using
the Fundamental Theorem of Calculus.

-

Suppose that a particle travels along a straight line

and its velocity is given by v(t) = tz + 8t + 17

feet/sec. Find the distance it travels over [1,5] by

(a) using the limit of a Riemann Sum, and (b) by using . -
the Fundamental Theorem of Calculus. -

Consider the following limit of a Riemann Sum:

25

i e
k)




. v \

n 5 N
Lim § ({01 + (1)(6/n)]1" + S[1 + (1)(6/n)] - 23(6/m)).
n»>o 1=] .

Write this as a definite 1integral and evaluate 1t, by
using ‘the. Fundamental Theorem of Calculus.

4 o
I_(xJ - 3x + 1)dx
-2

3/'0 'l/
c. f (x EN x)dx.
-

5. According to Hooke's Law, the- force F requlredxto
stretch a spring x units beyond its natural length is
F(x) = kx, where k_1s called the "modulus of the
spring." Suppose that 1t takes a 2-pound force to
stretch a spring from 15 inches (its natural length)
to 20 inches, so that F(5) = k(5) = 2, or k = 2/5.)

With the same spring, what is the work required to v(
stretch the spring from 15 inches to 21 inches?

. 9. 'ANSWERS TO MODEL EXAM '
1]
. la. n .
I (202 + (i)(3/n)] + 3}(3/n) ¥ .
. i=] . \e
b. 30. '
[ 5.
J (2x + 3)dx. ,
2 .
! d. 30. . ‘ ’

i - - - -— - .- - - —

2a. lim z i+ (.)(u/n)l + 8{1 + (1) (4/n)] + 17}(4/n) = 616/3 .
Mo j=] .

-

o ’

LRIC I

a




5 .
b. j (2 + 8t + 17)dt = 616/3 feet. . .
‘ »

. 37 s / i
' j (x® + 5x - 2)dm = 222.
L] " N
' . T 4
ba. 48. ‘ =
b. 8 3/15. :
l 1
c. f(x) = x‘/2 + x is not continuous over [-1/2, 3/14].’ . .

6
5. J [(2/5)x)dx = 36/5 inch-pounds. ( ‘
0
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- " ATMOSPHERIC PRESSURE IN RELATION TO -
2« 2 77T HEIGHT AND TEMPERATURE .
T ) 1. FNTRODUCTION

P - _— ~

-

Sy Atmospherlc pressure on the“Earth' s surface 1s due -
- to “the weight of the atmosphere above. Imagine a vertz-

t

“cal coLumnvwhose Cross section 1is an inch square and
which extends upwards from the Earth s surface without

bound (See Figure 1.) - : .

Figure 1.

The weight of'this column in pLunds (as weighed in a
vacuum) is numerically equal to the atmospheric pressure -
. in pounds per square inch at the surface. This is so

since the pressure at the surface is the forcé per unit
area due to the weight of the atmosphere. More general-
ly, at a height x above the Earth's surface the atmos- .
pheric pressure is numerically equal to the weight of :
that portion of the air column above height x.

We make use of this simple observiiigp along with
certain well known falts' about ideal gasses to create
3 two matheratical models of atmospherig preésure;4 The
first model is somewhat simplified since it does not take
. temperature v;riagion with altitqde into account?‘ {ts
S introduction_serves the purpose of preparimg the way for
the study of the more comﬁlicated’second model which does
~take temperature variation into account.. We apply +this
second model to study, conditions un%ﬁr .which the ,atmos-. ¢

phere is unstable. L
. ¥
Q .. ) - ~ I3 ’

.ERIC -
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‘samples t!ken at hlgher altitudes.

e w : 3 5] 2"‘,
. , . | 2 )

o

2. THE ‘SIMPLIFIED MODEL

Y :
2.1 Derivation of the Formula

Consider ;he~c01umn of atmosphere as described in
th? introduction. Let P0 denote the weight of this col-
umn in pounds. For any.x 2 0 let P(x) denote the atmos-
pherlc pressure in pounds per square 1nch, X 1n€!§s above
the Earth's surface. L1kew1se for any x 2 0 let w(x) de-
note the weight of that portlon of the column, in pounds,
from the Earth's surface to the height of x inches above

the surface. Figure 2 illustrates the relationship be-

.tween P(x) and w(x).

.- 4
. > i
ey : .
a7 I}A———— has weight P(x)
: . X { } = has weight w(x)

. ‘ Figuy 2.

The follodwing equat}ons are now clear.

‘ P(0) = P . .

gl) CP(x) = P0 J\M(X) ffor any x > 0.
hd 4

Observe that as functions of x, P is decreasing and
w is increasing. Let us suppose that the functions P and
w are each continuously,differentiable.

If we were to weigh samples of air at.various alti-
tudes we would normally find that for a fixed volume,
samples of a;r taken at low altitudes are heav1er than
For any x > 0 let
p (%) denoue the weight of a cubic inch of air in the
célumn gt height x inches above the Earth's surface. We

shall all p(x) the density of the atmosphére at height x.




¢
-~

.

F
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Ordinarily o is a decreasing function inh x. Let
Po = p(0), the density of air at the surface of the

column. h

Next we assert that for any x > 0°

-

(2) ¢ 0 = w(x) = p(x).

To see this, first observe that for any x >0 and
Ax > 0, w(x + Ax) - w(x) is the welghé in pounds of the
air in the coluhn from'height x to height x + Ax. So -

the quotient - : N

w(x + 8x) - W(X)'
. Ax

is the average density of the air in pounds per cubic
§

inch in that portion of the column’. ° Thus

lim w(x + Ax) - w(x)
Ax>0 Ax

v;'(X) =

represents the density of the atmosphere at height x,
thus justifying Equation (2).

Next, differentiating ‘both sides of Equation (1) and
applying Equation (2) we obtain ¥
(3) ' P'(x) = P(x) for any x.

We now introduce two assumpllons used to censtruct
the simplified model:

(a) the chemical composition of the atmosphere is
(The
ratios of the various gasses making up the

uniform and independent of the height.

atmgsphere are ind%pendeqt of height.)

(b). The temperature of the atmosphere is indepen:
dent of height. - -

If we apﬁiy these assumption§ along with the assump-
tion that the atmospﬁere is- an ideal gas we may inyoke‘a
variant of Boyle's law which states that the density of

s -

- 9 3

‘)
(¥

»

S
a gas is proportional to its pressure. So for any x > 0
P(x) _ p(x) .
Py Po
or
(4) p(x) = 52 P(x)
0 -
Combining Equations’(3) and (4) yeilds the equation
- P'(x) = —Q P(x)
whose solution is evidently ' )
L
(5) . P(x) = P, exp for any x > 0. -

[y

Equation (5) is a formula relating atmospheric pres-
sure with height. For the sake of practicality we modlfy
(5) so that x is in units of feet rather than inches.

Thus (5) yeilds

(6) N

. 1-12p x
P(x) =‘P0exp '—Trg-' for x in units of feet.
. o
- v

2.2 An Example N .

~

N -

Let us now apply Formula (6) based on the assumptlons

‘of Sectlon 2.1.

Given the assumptions of this Sectipn and that -
Po = 14.7 1bs./sq. inch and o, = 4. 34 x 107% 1bs./cu.
inch, find the atmospheric pressure at 20,000 feet above,,

the Earth's surface. By (6) -,

-s ~
P(20,000) = (14.7) exp l:'(”)(‘;;‘?‘%"lo )(zo,ooo)]
i+ *
= 7.24 1bs./sq. inch. . e
- : Y i
39
) ,




" Exercise 2.1
/ ’ .
) Given the assumptions of this section and the values of P, and

4 Po as in the example above, at what height is the atmospheric pres-

sure 1/2 of its-value at the surface? -

Exercise 2.2 T, S - . .0
Given the assumptlons of this sectlon, suppose that at thgt .
Eatth's surface the atmospheric pressure is 15.00 pounds per square
inch while at a helght of 1,000 feet above the surface the atmospher-
1c*pressure is 14.47 poumds per square inch. Find p,.
. Exercise 2.3 . ';

Given-the assumptlons "of this section and the values of P, and p, 1n
\Example 2% 2, assume that the Earth's radius is 4,000 miles. What is
the tptal welght of the Earth's atmosphere 1nApounds7

o’ . LN g

"3. THE MORE COMPLICATED MODEL

. 3“rwmner1vat10n of the Formula . .
- . : -
' Let us now- delete the assumptions th4t atmospherlc

temperature is independent of height.

We shall measure temperature on the hbsolute scdle
of the Kelvin system. Recall that the Kelvin and the
Celsius .systems are related since an increase in temper-
ature of one degree K (Kelvin) is identical to an.in- *

‘crease in temperature of one deg;ée Celsius, and each
correspond to a temperature increase of 1.8, degrees on
the Fahrenheit scale. However, under the Kelvin systenm,

»y

0% K is absolute zero, water freezes at 273.1° K, and
water boils at- 373.1° K. To convert from the Celsius to
the Kelvin system, simply add 273.1.

The relatiomship between .temperature on' the Fahren-.
heit and Kelvin scales are given by the equations K

<

Aruitoxt provided by Eic: - K .

1.8K-- 459.58

k2l
[}

and . .

<o

l

K= (F + 459.58)/(1.8)

where F and K are the temperatures on the Fahrenheit and

. the Kelvin scale réspectively

For an; x 20 tet T(x) denote the temperature in
degrees Kelvin of the atmosphere 3t height x in 1nches
above the'Earth's surface. Let, T, = T(0), the tempera-
ture at the surface. 1In Sectien 2 we,applied Boyle's law
of ideal gasses to obtain Equation (Z; In this section
we complicate the model by superimposing a variation of
Charles' s law of ideal gasses which states that the gas
density var1es inversely with temperature when measured
on an absolute scale, such'as the KeIV1n scale. Conse-

quently we must introduce the factor Ty/T(x) to-the right

hand side of Equation (4) to obtain .
!
_ T P(X)
(7) P(x) = $ry
Hence

. ) '(x) gg

Hence for any x > 0 we have

fx . X
Pi(t) g¢ = 22T l__ 4t
Py 4t T P, o ¢ .
0 o . - .
' X - S
1n B “%oT -1 q:t
Po Po |. T(1)
- o 0
and hende )
v : Ct [peenT (X |
1
P(x) = P exp [ 09 ‘ dt]
ool ]
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where x is the height in/inches above the Earth's surface.
Finally, let us adjust this formula, as in Section 2, so

that x is in units OE feet. Suppose that the function T
gives the temperatugg at height x,
Then the

gives the ‘temperature at height x,

in units of
T(x/12)

in units of

where x is
feet rather than inches. expression
where x is

Hence at x feet above the

.

! - 12x
P(x) = Poexp[l—%ﬂzﬂ[
o
0

inches. ground

1 dt]
Tt;?lZi *
’ \

~ N 4

So we must simplify the expression

*

12x ' ’ °
% 1 dt .
\ T(t/12) |
@ .
Introducing the substitution u = t/12 we have '
12x » rx *
1 ~ 1
T(T/12) dt = 12 . @y du
0 . .
fx .
= -l
= 12 m dt .
J0 . .
Thus we finally arrive at ) T

-lZpoT

(8) . P(x) = Poéxp [ Py

[x . .
9 1
T(T) dt
Jo Cd
where x is in units of feet and Tfx) is the temperature
at a height of x feet above the Earth's surface. “
3.2 An Example, T Varies Linearly with x

-

General aviation pilots use the rule: the tempera-

ture of the atmosphere ‘decreases linearly with height at

‘a rate of 2° C (Celsius) per 1,000 feet of altitude,'

Since the difference of a degree Celsius is identical to
the difference of a degree Kelvin we may trinslate this

42 -2 ‘ - 7.

rule into the formula

T(x) = T, - (2/1000)x

"where x is the height in units of feet above the: Earth's

surface. Combining this formula with Equation (8) we
have
X X .
1 dt = 1 dt
T(t) T%-IZ?IOOOit
0 0

-(500) 1n(1 - x/(S00T,)) ,

and so by (8) we have

\

129 T
P, exp ——————(SOO)ln (1- x/(SOOT 1)),
o

P(x)

or equivalently

¢ [60009 T J
: oo
9) | P(x) = Po(1 - x/(500Ty)) L To o
Example: «

Assuming Equation (9) with P, = 14.7 1bs./sq. inch,
Py = 4.34 x 10"% 1bs./cu. inch and T, = 293° K

(a) What is the atmospheric pressure at 20,000

feet above the Earth's surface?

fght is the atmospher1c ressure”
half of thqxpre

Solution of (a)

(6000)(4.34 x 10°%)(293)

3 204000 1407
P =14.7 [1 rgﬁﬁTngjy] .
' / N
= 6.86 1bs./sq. inch. :
Comparing this answer to the answer of 7.24 1lbs./sq. inch
7 8
Iz ‘1:3

"
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’ of the problem as treated ih Section 2.2 we see that there Let us study the conditions of instability under the
k is a difference of only about 5.5%. This is not surpris- assumptions and results of Section 3.1. Combining ? N
> ing if we observe that the first order Taylor approxima- Equations (7) and (8) we have

tion of Equation (9) is indepepdent of T.. ‘ ’
’ ‘ P ° DoTo 12051, X 1 \

Solution of (b): - - P(X) = m—=s exp dt

X) p o T(¢t)
Lv'S I (o]

s Assuming P(x)/P0 = 1/2 Equation (9) becomes
. ¢ uhere X is in units of feet and T(t) is the temperature

(6000)(4.33 x 10-°)(293)
4.7

1 1 x (me sured on the Kelvin scale) t feet above the surface.
7 '[ © (500)(293 Thus by Equation (10) the atmosphere is unstable if
< 9 (c i h ) !
o oL } X 5.1 computing to three S _ . i - .
(1 iSﬁﬁiiZgoil _significant digits) ol (x) = Podo Tr(x) + 20670 exp ( - 0T6 fx ! dt] >0
L . * : [T(x)]? : EO PO 0 T(t) -
- . So . . - )
] . ' .
. 1 ; ] . This inequality reduces to
1|5.19] 1 - X - . e
) ) z (500)(293) -120 T
(11y T'(x) s —p22 .
or ' 0
/ 1 i Example
o x = (500)(293) ll -1 (S'Igl ] ; ‘
2 ; 2 Agsume that T drops 11near1y with height, T, =

293° X, Py = 4.34 x 10°° lbs /cu. inch, and P, & 14.7
1bsi/sq. inch. Find the max1mum temperature at 1000 feet

18,300 feet (to three significant digits)

ke

- 3.3 An Application to Metedrology

above the sufface of the Barth 'so that the atmosphere is

. .

. - Let p(x) denote the density of the atmosphere at ) unstable. The assumption of linearity requires that
¢ height x in feet. We would normally expect that de- ) -
r 8 n fe y expect e T(x) = T, - kx
creases as x increases. Under these conditions we shall . -6
say that the atmosphere is stable. Otherwise we shall . ‘for some positive cofistant k. Thus by inequality (11) we
call the atmosphere unstable. In an unstable atmQsphere have -
A . - .
"a given yolume of air above wolld weigh at leastjas much b . .
as an equal volume of air below. Under these circum- o . - K < “12p T
" stances there would be a vertical motion of air cau51ng . - Py ‘ |
winds and down draughts Mathematically the air is un- or ) . J
stable if ] ’ ) ' .
10 "(x) > 0. ) ) B . 0.0104 < k (approx1mat1ng to three
(10) pr(x) 2. ; . (} . .significant digits) .
- L E— e T T T
[ - . 9_—_’_————-‘ - 10 3
. L BRI K ) N . .
- o _.__»—ﬂ:"" I ,4’./ - ' ' . =~ . - —
=g T - 44 * o 45

hd [) [ Ryl . [y
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. To achieve the maximum temperature we requ1re that k be . 4. ANSWERS TO SELECTED EXERCISES
as small as possible, i.e. k = 0.0104. Thus Fond

T(x) = 293 - (0.0104)x. 2.1, 19,600 feet. .
So for x = 1,000 ) 2.2, p, = 4.497 x 107°
T(x) = T(1,000) = 293 - 10.4 = 282.6. . 2.3, L19 x 10P° 7
. . »

Notice that there is a temperature drop of 10.4 degrees %«? - 3.1, 10.2 1bs. per square inch at 10,000 feet.

Celsius per 1,000 feet. This corresponds to a dYop of 6.87 1bs. per’square inch at 20,000 feet. .
approx1mate1)f 18.7 degrees Fahrenheit‘ per‘ 1,000 feet. ) 22 by = 4.40 x 1078

One Final note. The second model is still over-sim- ' : 4

_plified since it does not consider the possibility of 12000;>0T0 ;
variation of atmospheric composition with altitude. In : kx ] Pk - ’
particular, tlie atmosphere. may vary in altitude with res 3.4 oP(x) =% [l N 1000T, N
spect to the amount of water vapor it contains. The * Lo :
atmosphere may also contain such poallutant"s 35 smoke and L . . ‘.
smog. These all contrilbute to its density, and hence to \ ‘o " . . - . -
its pressure. . ce ) ) C . ,

- N «. " 'o ¢ 5 . ) 3
. tf b ] : e i * - ' '
. a R . . - . . .
Assuhing Equation (9), Py = 14.7, p, = 4.34 x 10-°, and To = - W " S )

. 300° K, what is the atmospheric pressure at 10,000 feet and at e ’ ’ .
20,000 feet? : ) . . ’ é .o ., 1 .
Exercise'3.2 - : ¢ . ' . - .

o Assume the model of this section and that temperature «decreases o J . ’
linearly with height. ~Suppose P, = 14.7, and T, = 283. Suppose, ) ot : .
in addition, that at 10,000 feet T = 293 and P =.10.2. Find P,. : T ) ¢ ° ‘ ‘e

P . . M -
Exercise 3.3 - . ’ , .
Assuming T is a constant (and therefore T(x) = T, for all x) / -8 . o ’ —— ! . ;
‘show that Equation (8) reduces to Equation (6). ; ) ¢ ) )
! .. ° .
Exercise 3.4 . ° / . . : ‘
A§s ing that T decreases linéarly with height and assummg the _ . e : . ;
modgl oFthis section, generalize the formula of Equation (9), g1ve ) N L ‘. : ’ -
that T decreases by k degrees Célsius per 1,000 feet. . . © * RN
- a ’ . 4 ‘ < . f
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T

Institution Course No. *

Check the choice for each question that comes closest to your personal opinion. : -

1. How useful was the amount of .detail <in the unit? - ' \'

Not enough detail to understand the unit

Unit would have been clearer with more detail

Appropriate amount of detail . -

Unit was occasionally too detailed, but this was not distracting
Too muéh detail; I was often distracted

3l

>
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™
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%

2. How helpful were the;problem answérs? - ) .»

~Sample solutions were too brief; I could not do the intex*iate steps
Sufficient information was given to solve the problems - -
Sampl? solutions were too detailed; I didn't need them >

~

3. Except for fulfillingﬁthe;prereq;isites, how much did you use other sources (for .

example, instructor, friends, or other books) in order to understand the unit?
. . i

____A Lot '(ﬂ‘é Somewhat A Little . ___Not at all

4. Hoy Iong was this unit in comparison to the amdunt of time you generally spend on
a lesson (lecture,and "homework assignment) in a typical math or science course?

About Somewhat " Much
the Same ____Shorter . Shorter
5. Were ahy of the following parts of the unit confusing;or distracting? (Check
,as many as apply )

Prerequisites” ‘ Y - . 7
_.__Statement of skills and concepts (objectives) ’ ] .
Paragraph headinga ’ - - |

Examples . \ .
_Special Assistance Supplement (if, present) -

)ther, please explain e .

EL

.

.‘ R e S
6. Were any of the following palts of the unit particularly helpful? (Check Js many
as apply. ) . .
-’ “Prerequisites ]
Statement of skills and concepts (objectives)
Examples .
Problems . ’ . -
.  Paragraph headings ° . X
Table of Contents . l
Special Assistance Supplement((if present)
Other, please explain

L)

|

A

|

|

|

Please describe anything in the unit that you did not particularly like.

4 f
I X - ’
? N i T ‘.’
.Please describe anything that you found particularly helpful. (gléase-use the back of
- this sheet if you need more space.)
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1. INTRODUCTION -~

N .

1

In this module we consider some propertles and illus-
trations of space curves that lie on: g1ven surfaces. We
explore the following questions:

1) How 1s the 1nstantaneous rate of climb along a
curve on the surféke related to the equation of
the surface? \

2) Is 1t possible to find a pgth on the surface
for which the ratg¢ of climb is optimized at
each ppint along the way?

—raa

As physical examples, consider the fOPlOWlng situa-

»°

- ~

tions: )
Example 0-1. A party of mountaineers can ascend to
a summit by a leisurely process of "switchbacking". A

few hardier members of the group wish to test their met-
tle by*startlng from the same location as the others, but
reaching the summit by .a path that is always the steepest
possible. Certainly such a course, if it g¢an be found,
will be much more strenuous! If the topography of the
mountain is knewn, the principles of the grddient may be

useéd to chart such a course. &%

.

Example 0-2. An oil tanker .has met with disaster at
night, on a calm sea, and is left without radio communi-
catio&. A rescue vessel that js able to monitor continu-

ously the congentratlon L of the spreading 011 slick
tries to locate the tahker by moV1ng 1n the direction of

greatest ingrease oﬁ/the concentratien.  What 1s its path?
O \ .
In the situation of Example 0-2, we are thinking of
the concentrataon of oil, C, as the dependent var1ab1e,
\ and wehhaVe C = f(x y) wh1chf<s of the form z = f(x,y),

(a standard designation for a 3-dimensional surface). 7

.
<

2. PRELIMINARIES :
\ * ’ ) e “
"Let us begin by cons1dex1ng\\2at is meant by "a
curve lying on a syrface'". ¢ Suppose S is a surface in
three-dimensional space E, defined by

. /‘7 £(x,y) for all (x,y) in D,

where D is’a set, in the xy-plane.

N -

We rassume that S is a
'smooth" surface; l.e., the partial derivatives 3f/ax and

«

3f/3y are cont1nuous at each point in D.

Let Y be a durve that is defined by the parametric

'

equations -

© [axxaey
(A) i {y = y(t) ’
z = z(t) -

where t varies over an interval I, on the real line. If
x{t) and y(ts lie in D for cach t in I, and if z(t) sat-
isfies the equation z(t) = f(x(t),y(t)], then we say that

Y lies én the surface S. See Figure 1. , ’ .

: Y

. -
°o % t t ’
Figure 1, . ~ ‘
- _
: SO .
- 2




We also stipulate that Y be a dif%ereﬁtiable curve;
i.e., Y will possess axc length for all finite intervals
(t,,t,), in I. This is equivalent to the requirement
that the function [X(t)]? + [)"(t)]z + [2(t)]? be contin-
uous for all t i‘d%t],tz) and the arclength s 9f Y from

t

, to t, be‘g1ven by

t .
s = Jzuxmlz T (O F (017 dt
4 t .

~ 1

’

The symbols x(t), y(t), z{t) indicate, respectively,
dx/dt, dy/dt, dz/dt.

In applications, D may be a bounded or unbounded do-
main in the xy-plane and I may be a finite or infinite

interval. ’

Example 1. Consider the surface S given by

.

) z = x% + xy + 2y* ,
or .
. £(x,y) = x? + xy + 2y*
Note that
. N gé = 2x + Yy
: g§ = k + 8y3 . -

One specific curve y lying on S is given by

! Lo x = x(y) =t ‘

y:{y=y(t) = t? t in [1,2]
2= z(t) = t? + t3 + 2t%

where we may verify that z(t) = [ x(t}]2 + x(t)y(t) +
2ly(t)1* by suﬁ%tituting into Equation (1). The arc-

length s ‘of/this curve is given by ) . X
i"‘ 2 .
. s = I Y1 +4t%7 + (2t + 3tZ + 16t7)? dt
o - l . X a \

A 1 . . 3

(The value of s can be found by numerical integration;
we used a Romberg procedure to obtain s = 520.0302 .)

Exercise 1: Let S be the-surface,defined by
z = f(x,y) = x* + 2y%, for all (x,y)’
a) Sketch the portion of S that lies over the first octant.

b)' Find 3£/3x, 9f/dy .|

X(t) = tcos t

c) Verify that the curve vy: J y(t) = 55 sint
. z(t) .= t?

* >

'd) Find the arclengtﬁ of the curve y for t in [0,27].

. (Hint: You should see that Y is a helix winding up around the
elliptical paraboloid z = x% + 2y2.)

.
N

3. -DEFINITION OF THE GRADIENT

&,

The partial derivatives of f(x,§) determine af im-
portant vector field in the xy-plane.

-
‘The Gradient Vf(x,,y,) of the surface S defined by
the function z = f(x,y) at any point (xo,yo) in p is the

vector

of 7 of 2

== 1 + = ]
T Ly,

Q A . ) . . x
where 1 and ) are unit vectors along ,the positive x-axis

[
Vf(xq,Yo)

and the positive y-axis, respectively, and the notation

. <
\ S (Xg,Y,)

indicates that we substitute x, for x andkyo for y in the
expressions 3f/9x and 3f/3y.

-

N
~1
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JExample 2. To find the Gradient of the function in
Example 1 at the point (xq,Y5) (1,2), we find the par-

tial deriﬁatives - ! °
of of
5; = 2x + y » 5? = X 4 8y3 ’
form the general expréssion
Elx,,y,) = (2x ¢+ T v (x v 8y ,
(1,2)

R

then substitute 1 for x and 2 for y tof find °

~

VE(L,2) = 41 + 65 .

Note: The Gradient @f S depends only on f{x,y) and on
= f(x,,Y,). This fact,
'thoqgh readily apparent, deserves emphasis'! Even though

(x4,Y4) but not on z,, where z,

S is 3-dimensiona1, the gradient of S is a 2-dimensional
vector. Often the 6radient ef(x,y) is confused with the
Normal to S at th? point (xo,yo,zo). The Normal
Ns(xo,yogzo) to S, however, 1s given by

- - of : £ 2 -
' NS(XO,YO,ZO) = 5; (xw’yo)l + éy (XO’YO)J - 1k

which is a vector with three components, while the Gra-
dient has only two.

-

4. “3-FINDING THE TANGENT VECTOR TO A CURVE ON
. A SURFACE USING “THE GRADIENT

'

Suppose that a surface S is defined by z = f(x,y), "’
and that y is a curve on S. Then recalling the parémet-
ric form (A) for y we may define T(t,), the fangent vec-
tor to y at t = t, by the equation

Tt = ()i + y(0)j + 54t)i’ . .
v . ft = t,

i(t) %hay be found directly from the parametric forms,
but since we have a chain

=
]

x(t)
y(t)

-

. zo= f(x,y):

~2
[}

we may also use the,approprTate chain rule, as follows:

(B) ity = 5 x(0,yOIKW + 3 cwymim| -
, . t=t,

or, ‘what 1s the same thing,

. of . of .
z(ty) = = (x,v) x(t,) *+ == (x,y) y(t,)
° ox Ix=x(t°) ° % - x=x(t ) °

y=y(t,) y=y(t,)
The chain rule is also commonly written as

. dz _ 3f dx , 3f dy . -
' dt = X dt [ 3y 3% ’

\

see Thomas § Finney, p: 401 or Greenspan § Benney, p. 496.
An example should help t& clarify the two distinct ways

of finding z(t).

Example 3. From Example 1, we know that the curve

x = x(t) =t~
y:{y =y(t)y =t? t in {1,2])
z = z(t) = t2 + t® + 2t® .

lies on the surface

z = f(x,y) = x? + xy + 2y"
sFrom the gefinition of y we have

2(t,) = 2t, + 3ty4 + 16t,7

- . '

so that tangent vector to vy,at t, is given by

Tee,) =11 + 2t°3 +(2t, + 3t .2 + 16t, )k .

We can also calculate ?(to) by using the chain rule, a;ﬂ

]
¢

follows:

1

Xty

A x(ty) ¥ (o))

(x = tg,y = t,?)




s

P .
J

Al

2 (x(t).y(t,) = x.+ 8y

(x = ty,y = t,?)
. -t

o

from which, using the chain rule (B),
- .

o Y885,

[}

2(t,) = (2t, + t,2)x(t,) *+ (t, + 8t,°)y(t,)
~ = (2t, + £, )1+ (t, + 8t %)(2t,)
=2+ 3ty + 1oty .

Hence, the tangent vector to Yy at t, 1s given by

Y

T(ty) = 10 + 26,5 + (2t, + 3t,2 + 16t,7)k ,

which checks with the above calculation. .

i

Exercise 2. For the curve

x(t) =t +1
Y:fy() =t -1
§ ' z(t) = §2 -1

- > H
which lies on the surface z = xy, find the tangent vector T(1) in

two distinct ways.

The connection between the Gradient and this
alternate calculation which uses the_Chain Rule will
P be explored after we recall. some concepts and proper-
l ties of vectors.

g Let a be the vector a = a,1 +a,j+ aaﬁ.
-%1‘. The length of the vector a is denoted by |a| and”

‘is given by

la] = va % +a 4 + a,

ERIC

.
- Py
[y

2. The projection of a on the xy plane wwll be
denoted by . .

, K . o
> A >
ap fai+a,j; See Figure 2a,
oy
3. The dot product of a with vector b = b,i + bzf +

ka is denoted by a2 - B and 1s given by a-b =
a,b, + a,b, + a;b,. We also have a -°b = |a| [BV

cos 8, where 6 is the angle betweeg a and B; see
Figure 2b. , = -

. *

4. Two non-zero vectors a and b are said to be
orthogonal (or perpendicular) 1f a-b= 0, i.e.,
if the angle & between them is 7/2. From 3, a
condition for oxrthogonality ‘also becomes#a,b, +
a,b, + a,b, =0, which is satisfied in two dimen- °

, = 0, b3 = 0) if and only if we have

b = c(-a2§ + axf), where ¢ is a proportionality con-

sions (note a

stant. ‘ "

~So far we haye seen that if the curve y lies on the
surface S, (given by z = f(x,y)) and if x =‘x(t) and
y = y(tﬁg!re given, then the z-coordinate for y must
satisfy the "surface requirement” z(t) = f[x(t),y(t)]).

More importantly we notice that, as in EB),

gé [x(t):y(t)li(t)+ %§ (x(t),y(t)ly(t)

z(t) ‘=
which may be written as the dot product

2 H(6) = Ty () - F o),

where Tp(t) = x(t)i + y(t)j is the projection of the

<

tangent vector~TIt) in the xy-plane.




g?m??* A 2 ' Thus the rate\af change of the eoordznate z(t) de-
. ! ? Y, pends. on two veetors, Vf(x(t) y(t)) and T (t), both of
. o AL 3 , whichbave located in the xy-plane. By the definition of

a{ the dot product we can also write

12

“2(ty) = 1FEx(t),y ()] l?p(t)icosw(t),l
t

Y, ” “ A 0

pro;ected vector Tp(t) at t = t, . We see, then, that
the sign of z(t ) 1s deterglned by the sign of cosy(t)
- and thus that the coordinate z(t) incredses when
, | é* cosy(t) > 0 and decreases when coswgt) < 0.
- . L~\~f:-\.J ~ And so z(t ) may be found from the two vectors ~
. N a? in the xy-plane (Figure 3) merely by forming their dot
product.

{
\ .

- | » where/Y(t ) is the angle between the Gradient and the
|

x ) Of particular significance is the situation where
Figure 2a. ¥(t) = w/2 for all va%ues.of t.in some interval. In Fhat
case, cosy(t) = 0, and z(t) = , (from above) for all t
. in the interval. Since the rate of change of z(t) is 0,
Az ) z(t) is constant for all t in -the interval. This leads
us to consider only the family of level curves,

Y. f(x,y) = c, or £lx(t),y(t)} = ¢

which are\projections of curves y lying on S such that:

. . each curve Yy is parallel to'the xy- p&g&e (all along the
curve v, z has’ the same value ¢). The notation \ W111A
be used to refer to a particular level curve of the form

- . . . ' f(x,y) = c; see Figure 4.

’

- o

Thus cos¢(t) = 0 implies:

: ; ’ At each point (x,,y,) on a level curve f(x,y) =C, , -

&

VE(x 0,y ,) = Tplty) = 0

K a where x, = x(t,), y, = y(t,), and ?p(to) is constructed
. from the parametric,equations of the level cufve (in the

x ‘ case they are available). If parametric equations for
Figure 2b. . . . ’g the -level curve f(x,y) = C, are not readily available, a

. . - v -
. H
- 9 .o -

9 4 . . ) 10
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Figure 3.
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! - s - -
. Vector proportional to T _(t ) may be constructed simply

/1

L

—
Figure 4. .

x ‘ o

Y

.
' - °

by noticing that ﬁf(xo,yo) and Tp(to) are perpendicular,
so” that by property 4 above,

> / Py ,
Fotta) = e[ 3 Oy dE + 3 (o,
Some examples will clarify these ;'copcepts.
Example 4. One level curve Y, for the surface S:
z = x? + 4y? is 5 = x* + 4y?, and it contains the point

‘(xo,yo) = (1,1). See Figure 5. For this level €urve,
we Write some parametric equations with relative .ease:

-

-

jt
o

: 6
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Figure 5a. :
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/
i -
/ 2
\7’- (‘xl*4y =S')
Figure 5b. .
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/

. Vg
. { Ax(t) = V5 cos t
Y i1 - ) t in [0,27]
’ b "/3'- - ¢
y(t) = = sin t ,
and at (x,,y,) = (1,1), cos t, =\/V5, sin ty = 2/7/5.
Now * )
-~ - ~ ~ ~ A~ 4
VE(xy,y,) = Zx i +e8y 3 = 2i + 8j;
. T (t,) = x(t )1+ y(t))= -VEsintis+B t.j
) p(t . ¥(t )y, in t,i+ = cos tj
= 2z V5 lf‘
= -¥V5 o 21 120 2
75 z2 75 .

2 1 ': 1 2 N
=~-21 +J-2-. = 7 (-41 + J);:‘

L]

And we check that on this leve} curve,

(23 N - (o A 1 ~s
(x4,Y,) T (t) = (21 + 85) = 3 (-8i + 2j)

L4

]

% (-16 + 16) = 0

Example 5. Next, treat the same surface as in Exam-

ple 3, but without param%triiing Y,- The level cutve

§ = x* + 4y? contains the point (1,1). As before,
VE(x,,y,) = 21 + 8] ,
and by inspection we construct /

-3 ~ ~ »
T,(t,) = cl-81 + 2j1 , _ ‘

-
which h#s the same direction as the Tp(to) in the pre-
vious example. .

» ~

/

.
i b -

. Let (x4,Y,) be a point on 'the level curte Y :
‘ - ¢ |
£(x,y) = C,. 'Then the vector

)

> f > af . 2
YOGy, = Oy dE v B (xgLy )

is normal to YLat (x,,¥,), and the tangent vector to YL

\ g7




[E

}

-~

\

At (x;4y,) = (x(t;),y(ty)) 1s .

. ~ X . -
. At a Certain moment its acceleration gs known to be a =

g

O

3

RIC

[ A poviaea oy e

' af T, Af
—"‘ Tp(to) = - g_y’ (XO’YQ)I + 'a—ic! Olyu’})) :
ot //\
p— B4 ~ . ~oe
. Tolty) = x(t1 +'y(e))) " : .

L]

. .
A fimal example will illustrate the use,of the Gra-

*dient 1n the case where the level curve 1s not ,easy to

parametrize.
v

Example 6. Let z = f(x,y) = x% + xy + 2v* A level
curve Yy for this surface S 1s x* + xy + 2y* = 1, and
(x4,Y,) (1,1) 1s a point on Y- As can be seen, y| is

not easy to parahetri"e but from Example 1 and the above

sRmmary, we maber1te Vf(xc,v ) =731 + 93 and, by con-
p(t ) = (31 + ). trefdentaily, this latter

be obtained by noticing that di t differen-
the level curve yields

struction,
could also
tiation of

(2) (2x + y)dx + (x + 8y*)dy = 0
or, at the point (1,1),
* 3dx + 9dy = 0 , .
thus forcing the tangent vector, - .
’ dx » da’.‘ . . N -
v a"l"’a‘%_], - A ‘

>
L]

to have a directioh parallel to -3i +

C . )
EESSS&ES;E' A point P 1s moving aiong the level curve of Example 6
.4; - Zﬁ, and .
it is located at the point (1,1). Resolvc the acceleration vector
into two components, a tangcntxal componcnt and a component normal
(H1nt
normal components T and N, such as a = clT + czN

dot produot'of both sides w1th T yﬁelds T.

to the path., If a vector X is.resolved 1nto tanmgential and
then taking the . .

L]
3=c,T- T since

T-8¢=o0; thus ) .
- -K, 5 . -~
- S S E
. }Tal T ) ‘e

* 15

©a surface

“ ’

and in a ‘similar manner we finq

5
a

o)
i

20 differ from the
z(t) mentioned earlier in

e

What s the role of the Gradient in

!
Questlon:

chain rule (B) on page o for

How does Equation (2),

- N -
this section?

Review Question:

constructirng the tangent vector T(t) to a curve lying on
S? -

/ . -

‘Answer: .¢i) for an arbitrary curve Y; the planar compo-
nent$ x(t) and y(t) would have to be given, from wHich

the components X(t) and y(t) are obtained;

dient may be ed (via the chain rule (B)) to determine
the componedﬁﬂé?wﬂ\ . ’

,4117 for a level curve Yy, We may find a vector
sproportional to T(t) by merely choosing a vector perpen-

then the Gra-

)
dicular to the Gradient vector.

6. APPLICATION OF THE GRADIENT TO FINDING N
. CURVES OF STEEPEST ASCENT (DESCENT)

»

Consider again the preliminary example mentioned 1n
the introduction. Suppose that f(x,y) in Figure 6 repre-

sents the concentration of oil, C = f(x,y). Now if the

rescue sh%pfis somehow able to monitor the concentration .-

of o1l at each point (x,,y,) and wishes to go in the di-
rection of greatest increase of C (from left to right)

proceeding from level curve to level curve, we would ex-
that it would contin-

pect from ihe results of Section 4

uously follow the Gradient direction from the point, say

(xg>Y,), to the right. Actually, this is true, and we
will provide.a proof(of this before continuing with some

examples. ‘ : \

16

£J

[

\




Q

ERIC

Aruitoxt provided by Eic:

-

Figure 6.

Keep in mind that we are seeking a path in the
xy-plane which will lead the rescue ship to the disabled

tanker by the method descrlbed in the precedlng ‘paragraph.

Let us translate our goal into more for al mathematical
language. The desired path in the xv é?ane could be in
terpreted as the projection Yp(t) onto the xy-plane of
special curve y(t) which lies on the surface C = fi{x,y)
6r z = f(x,y), (where we see that the roles of C and z
are interchangeable!). The special property qf y(t) is
that its projectiom yp(t) in the xy-plana:continually
move s in the direction of greatest increase of C = f(x,y)

from level curve to level curve.
[

17

70

Our method of solution will be to discover the curve
Y(t) and then to return attention to its projection Yy (t)
in the xy- plane, wh1ch is the path we seek.

The curve y(t) can be descrlbed parametrically as
follows:

. x = X(t) .
y(t): y = Y(t) a<ts<b ;
z = I(t) )

here, since y(t) lies on the surface C = f(x,y) (or z =
f(x.y)), we have Z(t) = £[X(t),Y(t)], and the projected ¢

curve Yp(t), as in Section IV, is'~
4

X X(t)
yp(t):_ a

y = Y(t)

7N
[ad
7N
[ ol ]

As before, the symbol ?p(t) denotes the tangent vector to
the curve yp(t), and as in (B), we also have

(C) Zet) = VEIX(L),Y ()] - 'T’p(t)

As you are aware, any curve may have several (and
even'infinltely many!) different parametrizations; we
wish to avoid y complications which may arise “along
this line by sdmehow 'normalizing" the curve y (t) It
is also-for convenience that we wish to make yp(t) inde-
pendent of the parameter t, and thus we introduce the
arclength s which 1s independent of the paxticular para-

metrization used for Yp(t)-

t . t — "‘
(D) - s = ] ITp(t)!dt = [ JIX(t)12 + (Y(t)}? dt |
. [} 0 !

or (by the:Fundamental Theorem of Calculus)

\

.
1T (1 = k)12 + (o2 -

Note ?hat, fegardless of the form of pa}ametrization of

v(t), we can solve (D) (symbolically!) for t as a func- .

tion of s, say t = t(s). Now, dividing both sides of (C)

18
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'by I?p(t)l, we obtain
- . ? (t)
=)L Fexce, Y] - =P
NGO I Tp(e) ]
or ‘
dz _'
3’; - gg = FE(X(s),Y(s)) --ﬁTp(s')
dt
where
A Tp(t)
qu(S) 2 = X
B . ' T, ()] i .

HPmaglic ~ #
is (conveniently!) a unit vector in the direction of

Tp(t), ;nd we have replaced t by the expression t = t(s)

which was found (symbolically) from (D).

Once again we recall the rules for a dot product and
note that

dz
ds

, .. ) R
] £[X(s) Y(S)l| lqu(S)l cosy(s)

iﬁf[X(s),Y(s)]l cos¥(s)

What have we achievéd here? This expression for dZ/ds
relates the rate of change of Z with respect to distance
(arc length) along a curve lying on a surface S and the
Gradient of that surface. ': . )

From this expression, we can s%e that

~

- . .
(i) dzZ/ds 1s maximized or minimized by allowing
Y(s) to be 0 or m, respectively, and
IFE(X(s),Y(s)) ], s
-|3flx(s).,YG‘S)]| ; .
eitMer (i) or (ii) wil?l be attained if the direction of

the unit vector GT (s) is precisely the same (or oppo-
site!) direction as the Gradient; more precisely, if

‘ ’ ‘ 19

(ii) max dz/ds
min dZ/ds

"

72

GT (s) = vf[xg_) LY(s))
P lVf[X(S) Y(s)]|

Thus we see that‘our assertion in the first para-
graph of Section.6 1s indeed valid: the path to follow
to achieve the greatest local increase (decrease) 1n
C = f(x,y) 1s precisely a path which takes the direction
of the Gradient vector (or opposite that direction) at

any point (X,Y) = [X(s},Y(s)): i.e., at each point the

“decision on which direction to move next 1s made on the

basis of examining the Gradient. We will refer to this

path as the "path of steepest ascent (descent)'.

Another way of stating this important result is to '
note that the tangent vector ugr (s) to the path of steep-
est ascent (descent) Yp (t) is parallel to the Gradient,

.VfIX(s) Y(s)]; thus the components dX/ds and dY/ds.of the

tangent vector can be expressed in direct proportion to
those of the Gradient.

X L), e,
g_z_ = A %—g [X(S)’Y(S)] 4

where % = X(s) is a function of proportionality.

then the level

Ax + Byem-..whieh

Example 7. 1If B, and A #

curves of the surface S: z = f(x)

Y

is a plane, are straight lines
Ax + By = C ,

each of whose Slbpes 1s m = -A/B. We will construct
yp(t), the curve of‘steepest ascent in the XX plane

through the point (0,0), and y(t) the curve of steepesd
ascgntulying in the plane S. We have

'
i

! af _ 9f -
'5'; = A ’ 'a—)‘,' B ;
| //,
(3) dX = dy .
s~ Mo gs

L]
>
=

73 20

.




s

v

may choose to measure arc length s from that point, so

. -
that an additional condition on the curve of steepest as-
cent becomes

v

{4) X(0) =0 ,
Then from (3) we have

dy . 8
X~ A
Now integrate and apply condi'tions (4).

-

Y(s) = % X(s)

Hence we see that a set of parametric equations for
curve of steepest ascent in the Xy-plane is

’
P

[ X(s)

i Yp(S) =

i Y(s)

and a set of parametric equations for the curve of steep-
N . N
est ascent lying on the surfage S is | .
; . !

-

X(s)

Y(s): Y(s) s

v I(s) = (A + 2—2)5 +D

It is now evident that Yp(t) (where we replace “the para-
meter s with the parameter t to facilitate correlation
§with concepts develeped earlier) is perpendicular to every
level curve Yy in the xy-plane. This is no accident; and
we leave it to you.to prove:

§
. 4
A steéepest ascent curve yp(t) is perpendicular

(orthogonal) to any level curve at a point of
intersgction.

.

Example 8. F1nq‘both steepegt ascegt cyrves Y (s)
and Yp(s),for fhe”surfage z = %(x2 + yz),ﬂ%hrough the'
point (x,,y,). !

.21
ERI

o e
7

apd since the curye is tospass through the point (0,0} we h

dX _
ds

v -4 dy
I °

y

Upon separating variables,

dy _ dx

Y X
and integrating, 1nY = 1nX + 1nC = 1nCX or Y
since Y = |y, when X = x, we have Y = (Yo/%4)X.

A parametrization for Yp(s) would be?

I X(s) = s
Yp(s): i

Y(s) =(Z3]s ,

X
4

X(s) = s
Y(s) =[¥%Js 0
Yo

Z(s) = %[1 + {i—]zlsz

‘e ° -

You will notice that ”Grgdient” curves yp(s) are straight
lines whenever the level curves f(x,y) = C are circles
(see Figure 7); keep this in mind as you proceed to the
next example.

Example 9. Find both "Gradient" curves Y(s) and
yp(s) through the point (X4,Y,) when z = f(x,y) s

5(x% + uy?), uw o> 1,
‘ »
dx .
! T =X

dy _
ds

from which we form the differential equation:

Q;;ud_i;; X(0) = x, , Y(0) =y, .

22
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Integrating, we obtain

plnX + 1InC .

InY =
e = 1nX¥ + InC
= 1nCX* ‘
or ot !
Y =.CAM
Again 1nsert1ng the point (x Y ) we have Y (k/x y¥.
Thus pardmetrx ations for Y(S) and Y (s), 1espect1ve1v
would be
I( X(s) = s
) Yp(s): 0°< s £ x4

S

/
Y(s): § Y(s) =y, oty
{ 0 = 3t )

In the present case, we see that the steepest ascent

curves in the xy-plane resemble parabolas passing through

Ehe origin whenever the level curves of f(x,y) = C are

ellipses centered at the origin.

~

Exercise 4. Sketch the level curves and the gradient curves Yp (s)
“for the previous exafple in the cases where u= 2 and y =

!
i

A remark concerning the solution of the differential
equations is in order. In finding the gradient curve
yp(s), you will always be using expressions of the form

.

dYy

dx _ _ ’
= £ (X,Y), o fy(X,Y),

ds

and conseqﬁently




‘I
.

d ay’ f.(X,Y)

(E) . HX = « X,Y

Y )

The general problem of solving this differential equation
for the actual curve Y = Y(X) which we have been refer-
ring to as y (s) can Be quite formidable. In our ef§m~

ples, you wlll notlce, the expression (E) gave rise to a
rather simple separable differential equation. In every
case, this was the result of special choices for f(x,y),
and a little imagination should cenvince you that a more

complicated surfiace z = f{(x,y) will result in a more chal-

~—

lenging differential equation. Aléng these lines, we sug-
gest that those of_ you who are better versed 1in solving
- first-order differential equations explore the following:
4 Problem: Find theiGradlent curves for the surface

. H

! -1 2 3 2
“ 2= F(x,y) = C e 2[AxT * 2by + Cy?)

-

where AC - B® > 0, B > 0, such that yp(s) passes through
o» ¥ = Y,- You will find that (E) becomes a hamo-
geneous differential equation. A further hint: Perhaps

3 -
X = x

an initial rotation of axes to eliminate-the xy term .

+ -
would prove convenient!

We conclude with an additional exercise which re-
. lates our development again to a pliysical setting.

k]

Exercise 5. A tanker located at coordinates (x,,y,) has capsized,
leaving an 0il slick floating on the calm surface of the ocean with
concentratlon given by the law

Clx,y) =4C,e @ [tx=x ) wnty-yyel g

*

/
! A small rescue vessel proceeding from location (x \y,) moves slowéy
in the direction of inereasing, concentratxon according to the above

law for a calm sea. What is tﬁe equatlon of the rescue vessel's

-

path? T

Q . - o @ -
ERIC R 75 /
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7. 'MODEL EXAM

~

“sugarloaf! mountain has the equation
z=H - a(x® + uy?), a >0, uo> 1.

Find the steepest

ascent’ curve a mountain climber must take if he or she
wishes to ascend the mountain by Gradient methods' The

Climber starts at the point (xo,yo,O).

(Follow the inda1-

cated steps to the solution.)

a)

b)

c)

e)

£)

g)

h)

Find the level curves for the surface

z = f(x,yh. What type of curves are they?

Find ‘the Gradient vector for the surface at the
i, . .
point (1,2), and also at an arbitrary point

'(x,y) ' -

Fitd the 1evel curve passing through the point
(1,2).

Find a tangent vector to the level curve in
¢) at the point (1,2).°

Using the result of b), find the differential

equation for the steepest ascent curve.
. - .
Solve the differential equation inserting the

given condition at X = Xos Y = y,.

Find parametric expressions for the steepest

ascent curve y(s) which actually lies on the
“

mountain surface.

Choose your own values for a and v, and make -
sketches of the mountain surface, the level
curves, and the steepest ascent curve yp(s).

. »
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8. ANSWERS TO EXERCISES AND MODEL EXAM

Exercises

1.

o

and

5) The surface is an elliptical parabaloid, with
lowest point at the origin; i1ts sketch 1s very

simiylar to that of Figure 3a,. -

b) r gﬁ = 2a ,‘T ii = 4y 2
0X AY
p 2 2 t2) 2
) [x(t))? + 2[v(t))* = t?cos?t + 2 "TJ sin‘t
°')
L=(t? cos?t + sin’t)
’ ’é = t? o= z(t)

d) Using the formula for arc length given in,
Section II, and grouping terms,®’ /

t=2n ! ‘

s = f J{t + %Jsxnzt +:{§;-+ l}coszt -t sint cost +4t’ dt
t=0 )

s -

From- the definition of y and T(t,), with .ty = 1, we

have,

T(1) = X(e)r + y(o)y + 2(t)k
t =1
or T(l) = 1; f 13 + 2k. Alternately, we can use the

chain rule; here f(x,y)'= xy. Since x(l)‘= 2 and

OY(I) = 0, ) e . ’ $\
. 3f . - . )
- EERRS y =0
Y P 8 .,
3;(&(1),)(1)) X’x - > <,
. y = 0

.

the corresponding

from which

2(1) = 0 x(1) + 2y(1)

= 0(1) + 2(1) = 2

so that i
T(1) = 1i + 13 + 2k

From analytic geometry, you should find that the

level curves for both the cases y = 2 and y = 3 are
-

cllipses, with the .major and minor axes maintaining

a constant proportion to each othesr 1n each caseg
. :

The gradient curves vy _(s) are parabolas for the case
Sketch

amilies- of curves on the, same

u = 2 and cubic curves for the case u = 3.

- »
graph, observing the orthogonality property! {
. . dX . C—o(‘ZQ(X‘Xl))
ds M

dy &(\ZGU(Y',YI}) >
ds M

where we have used M to represent
cal(x=x )2+ uly-y)?]
Then

dy _ U(.V')'l)
D

4}
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For simplicity, let us choose a = 1, uw =%,

.z = £(x,y) =:H - (x* + 4y?), an elliptical para-
2

‘boloid.
0 < C < H; a family of ellipses.

The steepest ascent curve Yp(s) is

X Y =y } N ‘ : .

<0

———

X
x’.)’

.See Figures 3a, '8b, and 8c¢.

The level curves are H - C = x

YAy,

»

Figuré.Bc.
s

*»
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separating variables we find

dY _ u dX
Y-y, X-X, ’,} \

and 1ntegrating, |

vty ) \

v
uln(xrx,) + \fc/

Inf€(x-x )" - -

It

“Taking antilogs, we obtain

.
-

y - )'] = C(x-xl)u 7 . .
Let us ihsert the given condition, which is the

starting point (xo,yil/f6} the ;escue ¥essel. Then
Yo o ¥y < C(xq-xl)u, l

i C = Yo Yy . 1 -
- ] '
(x,-x ¥
L]
so that finally ‘
A~ ‘ .
" e ) x"- x, ¥
y =y, * (y, Y,)(;:-T-;TJ

What+Kind of path is this? For example, if u = 2,
this path would be a parabola, leading directly %rqm
the point on;yo) to the point of disaster, (x,,v,).
(The vertex of the parabola 1s located at (xl,y]).)

&

Model Exam. ¢ -~ .

a) From the form of the surface equation, the lar- ®
~g€est value 2z can possibly have occurs when
X =y =0; indeed z = H is the height of the
mountain! ‘Alsé 2 = 0 would indicate ground
level. Thus the family of level curves would be }

Ce=H-aox*+w% , " 0<Ccech,
or
H - C = 2 2 '
8:1_ X + uy . v N .)'
29

“e

’
This is a family of ellipses, with the ratio of

the major axis to minor axis remaining constant.
-> ~ ~
VE(x,y) = - 20x1 - 2owy§™

¥e(1,2 - 201 - daj

To find the level\curve passing through (1,2),
insert x = 1, y = 2 into the$family of level
curves, obtaining (H-- C}/x =1 + 4 ; using this
value for (H - C)/a, the particular member of-
the family passing through (1,2) can be 1denti-
fied as '

1+ 4y = x? + uy?

d), The -t ngent vector along a level curve is per-

e)

£)

pendicular to the Gradient, so from b),

Tp = 4oui - 205 . i
dX _ 5 . ay _ .
I - 2aX s 2auyY
4y - )
dy | _ds _ -2ouY _ uY
ax’ dx <ZaX X
ds
dY _ wdX . - .
¥ ° X 1nY ulnX + 1InC H

« 1nY = 1nCX¥ ; <

Y = Cx¥
i 1t1 \ u yO
Inserting the condition, y = Cx ", C = —% and.
Al . x
thus [
: ry ¥
X ¢
.Y Yo'lx_o] »
" b
X(s) =-s
. L u - < .
L Y(S): Y(S) = yo_[_i_] 0 £ s _'xo_
4
(g YH12
Z(s) = H - afs? + u{%l%_} ] },\
. SR
) <)
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- 1. DESCRIPTION OF THE PROBLEM

. The orbit of a sdtellite arodnd the earth may be

considered to be determined by the gravitational inter- °

..action between it and the earth alone. Since the sun

©

. also affects the motion of the satellite, a small amount

“of error is introduced. However, the earth's gravity 1s
the most important gravitational factor. o A
In the same way, the description of the motion of a
planet around the sun may be viewed as the result of
these "'two bodies'

mutual gravitational attraction. Again

' other planets affect this motion, but the sun 1s the ma-
jor influente.on the orbit of a planet. ° The dynamics of)
the history of the solution of the problem of describing
* the motion of a Planet can be recrepted in a short time
using the modern tonveniences of vector differentiatlon.
. The central ideas and facts are the Inve;se Square Law

J and Kepler's three Laws.

- il

The common thread of the satellite and $Tanctary
s .motions reappeéars in modern physics on the sub-molecular
» -level’in the form of Coulomb potentials.

s

. Zl STATEMENT OF THE LAWS .

v
taen .

We imagine the situation”of two point masses, one
‘mass very much larger than the other. The effect of this

L assumption is that we let the position of the larger mass
be fixed. Put the origin/o% the.coordinate system at the
i "larger mass M. For convenience, call it the Sun. The
- motion of thé smaller mass m, now called a planet de-
saribes a curve in 3-space. In Section 6 we will show /.
that the motions of interest are planar. We will de- *
— scribe the motions in polar coordinpates. The path of the
) pldnet is written in parametric form (r(t),9(t))-where t
,w;;/, Jds time. ’ .
i 92

[
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. / PLANET masg m

{r,0)

m << M

\SUN mass M '

Figure 1. A planet moving around tHe sun 1n a fixed
coorginske system. The heliocentric view of the solar éystem
provided by Aristarchus c. 310-230 B.C. and resyrrected by,
Copernicus, 1473-1543 led to the discovery of Kepler's Laws . ’
and the Inverse Squares Law. . T !

. ” ! - ! )
Two of Newton's Laws are germane to our{discussion.
. :

-

The first is ’ - -

— -_— - - -

(i) : > F=mA | S . . . ~
w'\-.‘ . ®

that is, force F and acceleration A are VECtOr quantities

and they are proportional with the proportionality con-

stant being the.mass.” "In oyr problem, the acceleration

that accounts forsthe 'vector motion (r,8) is due’ to the
external forces via equation (1).

Secbndly, we'hav? the Inversé Square Law ~

(2) j

- GmM ' - .’
F=22y e s .
T : °

.

where G is a\constant which depends on  the units of mea-
: . "'h-én: - .
surement, but not on the solar System, and y‘i5 a unit .

vector directe °frdm the origin to the mass. M.
We will discuss three of Kepler's Laws. .

Kepler's First Law.,  The radius vector to the planet

SWweeps out area at a constant rate with respect to tinme,

bl . -
that is, the area of the shaded regién is Altz -t )
where A is a constant. -,

- « >
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Figure 2. Th{
first of Kepler's

this area 1s swept out.
pass the sun only once.

radius vector sweeping out area. The
aws was the computation of the rate in which -
It 1s a constant, even for fomets that’

N .

Kepler's $econd Iaw. The planet's orbit is an ellipse

cwith the sun at a focus. v

/

-

1

Kepler's Third Law, If a is the semi- major axis of an
e111pt1ca1 orbit and T the "time to complete one orbit,’

theq T?/a*
if the quantity T?/a®
ets of the solar system, it is the same in both ca3es.

is a solar system constant. In'other words,

is computed for twg different plan-

It only depends on the mass of the sun and units. -

» .
» ’ - -

. .~

3. HISTORY OF THE PROBLEM

PN . '

The problem of trying to efpiain'the planetary mo-
tion goes back, to antiquity. The part of the history
which we describe begins in the sixteenth century with
Copernicus (1473-1543) who was a proponent of the helio-
centric view of astronomy, i.e. that the "sun is-at the

center of thihgs.

Tycho Brahe (f546 1601) opposed the Copernican theory
It was thought that anything that

-‘\\22~re11g10us grounds
" . . % t " ) »

*

94% e

‘e
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dad not put the carth at the center degraded humanity.
Nevertheless, this astyonomer's careful. work was a ma)or
contribution in validating the Copernican‘approach He 'g
haﬂ received a commission from King Frederich JII of Den-~
mark to update astronomrcal tables. His observatory on
the -island of Hvenvcontalned no telescope (it was 1nven-
ted in l6q9) but he was nevertheless able to record a

great deal of accurate xnformation

This~ accurate 1nformat10n was put to.good use by
Johann hepler (1571-1630), who was Tycho s assistant for
a short time.
task, the study of the orbit of .Mars.
supporter of the Cgpernican ‘theory and his 1ife long am-

Trained as a mathematician he took as his
He was an ardent

bition was to find the mystical harmony in the skies.
His detailed study of Mars led to his pJBlishing his |

first two laws in 1609 and the third some ten years later.

»
B

© 2 Galileo Galiléf (1564-1642), -Who is well known for

hi7 experiments on partitles moving under the influence .

S

~

N

of gravity, dism?®ssed Kepler's astronomy because in intro--

ducing ellipses he was departing from the more perfect
circular motion
a heretic fo; his scientific views reJected, out of hand,
the work of Kepier far very unsc1ent1f1c reasons.

Jn the. year that Galileo died,
Sir Isaac Newtpn (1642-1727) was born.
acquainted with the work of both Kepler and Galileo and
At the age.of
25 he d1scovered that the only grav1tatlona1 force con-_

another sc1eqtist,
Newton was well

. - .- -
of course with the Copernican approach.

.sistent w1tm Kepler's laws was the Inverse Square Law.

He did not publ1sh h1s result . 1mmed1ate1y because he at-

"1tempted to va11date it by do1ng calculatlons.on the orbit

of the moon. Unfortunately they~d1d not check because
some of the data‘on distance to the moon was incorrect.

The correct data Lndeed did verify the Inverse Square Law.

Thus the scientist who was to be branded

«

i

He publlshed his result only when it ‘'was begun to be pro- ’

posed by other sc;entlstsf

~ - P

n--
J




1 -+ An amusing sidelight is that’when asked about the The vectors U, and Ugr are to be unmit vectors oriented as *
posibility of the Inyerse Square “Law as being correct, indicated. ' They do not.depend™®n r but 1t 1s easy to see
% . " . . )]
Newton replied that hz had once done the calculations. . that U/ (®) = "(cos 6,sin78) and Ue,'(()) = (-sin*9,cos 9),
When asked to reproduCe “them, he could not! Eventually ° , : - Y '
. he found an error in h1s second calculation Wthh when (3) d U. = Uy ; and d Up = -U_ .. >
. ds “r 8 » dg, Ve T \
. corrected gave the .Correct answer. * He is generally cre- ' - ’ . R
d1ted with the d1suover) +of the Inverse Square Law. Now R(t) = r(t)Ur(8(t)) is ‘the equation of the motion in i
* - polar coordinapes. We.let V and A be the velocity and ]
vIn succeeding sections we try to recreaté the scien- . . eﬁ\
. . R acceleratiqn vectors, the prime notation means differen- 45;»«
tific process of going from Tycho's empirical data to . . .. . . - LA
R - e s ) . - tiation with respect «to time. Then
Keplelj'g Laws ta. Newton's Laws. We will also show that ; L
- starting with Newton's Laws, we can recover Kepler's Laws} V = R' = U+ gﬂr gﬁ = r'Up + rUgo"
- B * . R - ‘ . ) )
¥ 4. MOTIONS DESCRIBED IN POLAR, COORDINATES : and \ .
. ° ’ L ) . i A=V = (X"UL s TIUGEY) ¢ (TTULEY v rUge" - r(e") U
Suppose that we have a-motion described in polar co- . . . '“ ’ - , -
ordinates ahd R(t) is the position vector. In order.tg N Thex;‘efore . ot .
. isolate certain aspects of the motion we can 1introduce a’ (4) As= [R" - r(e')ZJUr + (2r'e'. + re")Ue
' local coordinate system, as follows. . . . . :
¢ . . y O A Thé coefficients in this vegtor .
. ® :
' -0 . . Y B v . s ALt
| ", | (s) - ~ag =" - r(e')? - 4%
. . ) ° . T
I 3 i and ‘ " &R
v ; ] ‘ ‘ &6) ag = 3rier,+ ron o L
N g s 3 6. ;e . \
. ) s N . are called the ial and angular components of acceler‘d
. : o, . . ‘ i . tion respectifedy. | "These “are the usUal tangentlal and
ot - o~ ’ - normal compon nts only in special cases e.g. when t}}ﬁrv_@[ !
. . RS
: ‘ : & . * <hotion is on a c1rc1e centered at thq,orlgln 5 ,z,i;;g}f
, %%, ,6:0 . Ry
. ’ , v We'recall also that 1n polar coordinates the aw J%{%" y
. L
. Figure 3. The statdard” unit vectors for parametric, : lement is rdr d6 so that the area of the shaded reg@qﬁ’ﬁ[; .
palar coordinate motions. These form a "moving coordinate 5 3&3" 22 .
system'" which depend on the position of the particle. This in Figure is given by f{{g_:}f i
modern tool, not available to Kiler and Newton, allows one F. N * . ﬁift R
to almost complétely dlSpense wikh ge°mech and/dr,.;ngono- s < . ) 8, r(6) ~ 8," 1 L2 e ze’;&@‘i:‘ K
metric arguments. ’ JISONNE S(ty = de rdr = e = 2V VRS R
. . . : oAl
1 -~ ! i * - .'. . -~ el o 1 ' 'tl" N t"?\.“ﬁ“;:’:‘ '
® » *This is a warning to the $cientific neophytie. Keep 'your notebooks ’ 9 . . ' . o ,W‘s"é‘,
- % orderly. . .. .. . » . :;.Gr,{,‘.; .
-ng& 52 . ’ . ’ . . ? . A
'i‘ g . * . 96 . - . R . s N =~ . " F:,:‘@:‘ .
- 1 e
[} ) - N ‘ .. . ) ) . = . . 97 0 ., . ._‘: ."‘.-‘
. . . .s,"éf"\.'
Q ' ' . - : ¥ - - s . T ’ ¥V d
ERIC AR | ’ S : e sl
- ) o - . & S A
. I . . ’ ) ) (!
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DEDUCTION OF THE INVERSE SQUARE LAW

" FROM KEPLER'S LAWS o

- v
-

<N
Kepler's Laws ‘arg empiricdl results based on careful

obsérvations. If one assumes that only forces external

to. the planet account for its motion, then what muSt this

force be? Let us assume Kepler's Laws.

b . . *
" First obsd&ve that the first law applied to the for-
mula (7) gives

S'(t,) = 3 T =

N . ‘ " i
dhere Ni'is a conStant .
-~ ¢ \
‘The constant is*divided by 2 to make fhe next‘equa-

t10n and its further uses simplers Thus

» (8) rfgt = x|
- &
v N N “‘ v .

6" = rIZr Q *-re”]*a rah

1ffereht1ate th;s redatlon then
. A ‘\
,‘wo 2 v‘,
0

Tf wey

»
.Au-‘l ’ n* ° .

b3 we,see uhat’Keplur's fr:az 1au 1mﬁ11g;.that ae i 0,
that i's ghe adceYefatlon and therefore the force is pure- -,
Suah forces are called cen-
tmz ﬁ'qz’ae fzelds A . . t. .t

0 . . » . .
« T4 s

'We further assume that ‘the planet moyes in a -conic

sect10n~T§§e Appehdix 1), thq( ~is®_

v . oo

b

~ Lt r(lr e cos(es+ al) = B’ . A I‘
i

N . o ok

. leferentlatlng with respect to,time we get

Y

: ., T (T*+,e:cos(6 * o)) - re 51p(§v+'aJ§"

Uf we multiply this.equation by
get ’ '

~

add uée (Q)jahg (10) we

Br'2- )e sin(8 + «)

>.
t

Now we differentiate again Jo get

NeT

L

Brt - Ae cod(8 + ¢)6'

Aruitoxt provided by Eic:

v
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P
)

»
°

.

t

i-J;X *is not, what Newtfdn' ﬁld

t

We solve (10} fer cosf6 + a)'

)
Brn - )\(_E_ Y

L4

1)%"

Rearranging, we have

On- the left hand side replace X by (8) and on the r;ght

AT "2 by (8) to get: .

.

" side replace ©’

X 2

a = ——
Br?

L ! 2N= .
A= r{e')

(compare (1) 'and (4))

o

Since ag = 0 we haye;

.
-

2
SEmy
Br?

We have shown that rhe-Kepler's First and Second’

F = the “Inverse Square Law.

-
e

Laws 1mp1y the Inverse Square Law The above calculatlon

Somethlng closer to what he did
Yis ou;}lned in Exerc1se 1 where its shown that the Se-
coha and Th1rd Laws ;mpfy the Inverse Square Law. In any
‘case, t.hls s‘tlon shows that experlmental eV1dence—we11
used “can 1ead to nice and powerful theoretical results.

» . . H . - v

r S o ?

H
Exercise 1) éssume, as Newton' did, that the moon is 1n a C1rcu1ar
orbit and’ th&i keplgr s Second and Third Laws hold. °-Show that 6t is |
Introduce
= -(v¥/1).
Thls is the usual®fermula for centrzpetal accele€atton QOmblne w1th

a ¢onstant and therefore it is unlform C1rcuIar-mot10n

the linear speed v = ds/dt along the circle. Show. that a'

A

the Thlrd Law to get-the Inverse Square Law. .,

{Justify the steps in the follow1ng w1thbut d01ng any
\, :

2¢b§(1 - x*/a?) dx'; abJ
-1

Exercise 2.
iniegrals.
) 2?1 - ul du =
_al [N

Why.does this show that the area of gn e111pse is mab?

abmn x

We need this

.

formula for’ the area of an ellipse in deriving the Third Law. Hint:

Evaluate the last integral by 1nterpretat10$ rather than calculation.
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é. KEPLER'S-LAWS AS CONSEQUENCES OF NEWTON'S CAWS -~

- e

-

If one decides that F =

mA and the Inverse Square
Law are correct,

do Kepler's‘Laws follow? 'This is an im-
portant question. Kepler S Laws were empirical rdsults

based on fanciful hope and data ‘which had unavoidable in- - =
~accuracxes ' Suppose’one can ‘conduct other -experiments '
[f Kepler's

are' a consequence of the Inverse Square Law,

‘

Wthh verify the In\&r>e Square Law. Laws
then Kepler's
Laws wall no-longer be empgrlcalcgeSults from a single

set of datum

e

Asphysical theory is strengthened by logi-

cal 1mp1ﬁcat 'ns betyeen various emp1r1calfpesults In
this section we will jshow that Kepler's Laws can be de- v
duded from the Inverse -Square Law. . - b

First we give an argument that for any central force
fLeZd
is at a polnt P and* that its-moti&n has‘a tangent vectof
T at that point Draw the plang through the sun, through
P, and containing the tangent vector T.

the mottons.are plapar. Suppose thad the planet

If Z is the co-

ordinate normal. to this plane, then the force and hence

the acceleration in the Z direction xs zero. That 1is
Z(t,} =0, z' (ﬁo = 0 and 2'(t) = ¢ for all t. This im- ..
blles Z(t) = 0; the motion is planar. :

Secondly, if th; force is a central force field we
show Kepler's First Law holds. 1In the planar polar coor-
dinates, ag = 0.
retrace our steps -to (8) and (7) giviag the equal arda-

results$.

Thus we may start at equation (9) and

e

v - ‘ N » L4
.

N "
Exercise 3. - Do it. ) ' P

To ge the Second and Th1rd Laws of Kepler, we must
&he central force f1e1d to, the Inversé Square

l{ N ‘. \

spec1llze
We have

-

., that 1/r(8) 1s very simple.

If they are selectéd,so that e > 1,

(12) O %

. ; - . 2
and of course (8). The solution of. these d1£ferent1al

equatlons is difficule, butrqs made easier by looking at
the goab We want r to be a con1c as in, (10). Notice
This "suggésts introducing

the function w(6) = 1/r(8) and deriving a differential

equatjon that it satlsfles We have
[ ]
\
dw _ 1 dr _ 1 drdt _ 1 r° _ r s -
a—é— = -;—2— a—s— = 'r—z a? a‘—e- = 'r—z - = -—A_ using (8).
“ 1 ‘ .
Then *

B

for some constants a and 8 > 0'(See. Appendix 2).

Thus- L . * . o .
(14) r(s) = N ‘ @
: 1'+ e cos(® + a)
where : . \\ .
. Az _ BA? .
B'- Eﬂ and e = W . N e

s

Hence any such motion describes a conic section.

Notice that parabolas and hyperbolas®are possible. In

+fact the constants’8,,a depend on some initial-cohdition.

then the mass leaves

EEE 1) B

. ) . ’ -

N
.

‘o re' . oM GM C
M wli T . o+ 2 using (:12).
Arze' Az » i & )
Then from (8) . '
° ¢
13y o diw o GM ' .
: dez \ )\2 * '
It turns out that every solut/bn of,(13) 1s given in,the
form . ! .
w(6) = 9¥ + B cos(B + a) -




3 . ‘ - .
“The only bounded orbits are there- . . Moreover *

the solar system 5 { . i . %

fore ellipses (and c1r‘:les as a spec1a°1 ca;,e}a(‘Thxs 1s - . 7o 'bz r.=-az"_ ¢ = a2.. (a _‘T}%?)z ( o ’
Kepler s’ Second Law. , °‘ L R ax 'd., L ‘A_‘ DA . P
. , To demve i\epL,er s lh.lrd Law wé need to' Compute the = . -3 . .3 ’ = g f,e "‘-(1‘? )2 . ) -~
period T 2nd semi- ma)or i s al‘of an e'i,hpse Let b be . . o Co T . " 6 . ST -
the- >em1-m,1n;9r axig  and ,/a—Z'T benthe fogal length Usmg‘(l’é)‘ o s . '], v Q; - ..
The. formula for'T 1s_dasy. Since-the area of an - . ’ B ; e IR S I - T B
) :" ellxpse is nab (see Exercise 2)‘we have Cﬁy (7) and (8) . ' (1 + e N 1,'+ e‘ o : R T . :

(94 #

T o . Thus z ! ' . .
uab=f r2gtde = 2T, ' . : - ¥ ~
- ty 2 ) : : ’ ' b2 = 22 (5 .1 \e)] = Ba l
. . T . \ . I'+e '~ : AR B .
or ! " * T ’ . ) ‘ . s » ~ - .9
' - . 2 .. ’ : N Putting-this into (15) gives i
(15) T? =%afb2 .. - ” : ing \ :
. . - - ‘e
BN N ’ R , 2 . 41\'2 3 472 Rz 3 472 3
. C, S £ - Can o Vs g Bat s Sy a2 .
, R Pt o - Lo - .o
. . . M : Ngut. 4n? /GM 1s a constant_ that only depends on' the units
, N “ _ o, . vt and the mass of the sun, a Solar System Constant! This
? - ’ -« “1s Kepler's Third Law. ', ) ! ) ’
- ‘. . - . * 3 4 ., . N R ) A ~
. . c - . ¢ , . - e s
. . . o L T PR - 7. COMMENTS, -, - .
- ’ ? Tt . ‘e $ : ) .
. * fo. . ‘ . : s T 4
.- " ‘We have discussed the relationship between Kepler's
. 7 Laws and the Lnveérse Square Law in the congext df two _
pr ‘. ' masses.- We also assumed that the larger mass was fixed.
\ - ' 7 In fact, it will wobble- sIightly. What-is fixed 1s the ’
. . ‘ . ocs - common center of mass. When more than two masses are in-
Figure 4. An ellipse with the focus at’'the origin. e N N
. This is the picture that Kepler saw in his mind's eye. ° volved, exact descrlptlon‘ of the motipns can,be ascer- .
It is one @e can describe featly in polar coordinates. * - -talned only 1n very spec1a1 cases. gThis is called the -°

.

The major axis of,an ellipse with ends P and P' has length . n- bOdY problem. It is the fOCUS Of a gréat deal of .
* 2a. ‘'The length PF is the minimum distance from F to the mathgmancal research.” | L.
ellipse, P'F is, maximum, while the focal distance ¢ from . N . - .
© . the center C is ¢ = 1/2|PP'| - |PF} = a - [PR} . « .". . . . . L .
t v . . ‘ C. - . v
) Looking @t (14) we, see that r is smallest when \ . ' , 1_03 ) . |
. cos(0+ a) =1 and largest when cos(s + a) = -1. Thus # N . . ) . .
. . . . o *. . “ t’ v
‘ 1 ( B B.) B . oo )
\(36) Aa'7[1+‘e+l-e}‘1-e2' . ' : N : )
TN <102 " “ : - Lo
» \) L \ \ ] 11 ) ‘ , \ .

v . N 4
-




U . . §. FURTHER ERERCISES & -+ . _
\ - ) . . ) . ) ¢
L, E’xercis'e 4. Suppose you ebserve lthat‘ for the earth.a = 1.495 x 108\,
kn? and T = 365.25 diys.‘ If G = 6.670 x 10~} in m3/kg-§ee2 find )
the mass of the Sun. . ot ) ’ T . . .
'Exercise S. If the eccentricity of the earth's orbit is given po -
“be 0. 167322, and a as in Exercise 4 find ‘the exact eqyation of é :
. earth’s orbit. . . o W . \
Exe;'c;.se 6 You know that the usual expression £or grav1ty at sea .’
level is g = -9.807 m/sec?. Use the Inverse Squar& Law and the fact
. that we may replace fhe earth by a pdint mass at Ats center to get
~ B an exact éxpresSlon for the Inverse Square, Lay w1th the earth being -
Us¢ 6371 km. as the radius of the earth. Find thé

. the la,rge mass.

mass of the earth. Hint: Compare the two " formulae at the surface

of the earth. - ,

Exercise 7. If a satellite’ going adound the earth remains in a dir-

cular orbit, thep'cenr‘rj.petal acéelex"ation must balance the acceler~

Using this equation, compute the linear ,speei——/

’

" ation due to gravity.
v the satellite must, have if its al.titude is 100 miles above sea
1609.35 meters.

. level. (Ignore ai;' resistance.j 1 mile

Exercise 8. The Intelsat series geosynchronous satellite gepains

. above a Fixed point on the earth's equator. ' If it is in a cIrcular

orbiteyou can deduce its altitude. 'Please do.

.
~ . -

1967 was in an ofbit with

Exercise 9. 0SO 4, launched October 18,
What is the

radiys between 5.375.and 5,697 x 10°m. above sta level.
- . ¢ s . "

* "period of its motién? LT ' .
- . A}

b

Exercis® 16, E(x)ewith o removed by - . .
., ().

derive the formula

Take the general formula ma

Mult'iply by r' and ;ntegrate once. Then' replace A by (8) a}ld

Y - / . 1] '
- : %-'m (%—i—] + G(r) = constant

where dG/dr = -f.

1nq. ,
Q ) . ]

’ ,,,,} ) ' . -
Rlc - - A0 -

* (You may recall the formula foz ds in polar cGor-

-

’
L]

13

E

A FulToxt Provided by ERIC

dinates) G

energy.

EXercise 11.

centr1peta1

.experiment.

orbit in one second the samé distance as 'if 1t “ere dropped from a

The result of this Exercise is the Conservanon of Ene,rgy

stationary pOSJ‘tlon ’ ,

is called the pot\qxtlal energy; l- m(ds/dt) 2 is kmet1c

s .
* Describe a Maboratory exper1ment that -would show that c
acceloration’is i\(vzfr) Newton did this with a thought )

He g‘easoned that the moon must "fall" in its circular

. 4

'y .
-~
- . L]

"HINTS TO:THE SOLUTIONS OF TH{E EXERCISES

N 2
Exercise 11,
——_—.—_

tug of the strmg

the tug.- K

]

[N

' 9.
Exercise 1'. From (83 8* = A/r? is a constant, For a circle s = 1§ ¢ )
’so = ds/dt = rg' = )\/‘Iaj. Since r'" = Q ay, = -r(g')? = -v¥/r. ; .
From 27r ='vT and Kepler's Third Law a, = C/r®.
Exercise 2. The last integral is the area_of‘a unje circle. . ’
- . . 1§
Exercise 4. Solve (17) for M,
Ex1ercise 5. Use (16) to compute B. ’ N
Exercise 6. Write f(r) = mC/r? f(63;/'l.x lOf’) a -mg. ., . .
*Compare with (2) to find M:/’ . .
Exerc1§e 7. The equation C/r? = v2/r can be solved for v in terms .
.of known quantltles . . . 4 )
. o .,

Exercise 8, Compute v = wr, w the rate of spin of the earth aid '
apply the equation in Exercise 6 to fmd r, or use (17). , )
Exercise 9. “ Apply the derivatibn of (16) to find @, and then use
an. e , . )

- .' . . ‘ ) - = ’ ,
Exercise 10. ds? = dr? + r2dg?

Spm a weight at the end of a strmg . Measure the
Keeping r fixed, double the speed, remeasure -
eeping v fixed, double r. ) )




[

I3 ~ ' .
.
At ¢+ 10. MODEL EXAM ..

’ * A S~
C 4. > . ' .
oo Z'appose we are con51der1ng a planet's motion around the *Sun.

a) At what pomt on the orb,1t is the vector from the Sun to *
the planet turning the most rapldly"g(Flrst Law) .

b) Recalling that speed v = ds/dt, find-a formula f-sr the
speed of the planet which involves the polar coordmates
7 r and-other constants, but: not 8 (Second and First Laws) ~

.

%), On the basis o b}, “when is the s eed the maxmum’ ¥
P

@r ~
~ ¢
T
. <
. 2.
’ ' A
3.,
) 4.
-
L]
’\/ .
“
5.

-t

ERIC

Aruitoxt provided by Eic:

t

Using the Third Law; (or othermse) find the relatlonshlp be-

tween ‘the period of a satellite m a cu‘cul‘ar ‘orbi't and its

dlstance frop the center of the earth.‘ ’
‘3 3 \ ‘s
Descnbe why Kepler! s Laws were more acceptable after Newton' s
1]
work o ‘
N

A . o

! . _ . . - >
_Given that the acceléeration due to gravity at sea level on‘the

»

‘Square Law in thejunits feet and seconds Use the radlus of

. earth is g = ‘ﬂft/sec . Bind :the‘constant 1n the Inverse

the. earthr as 4000 miles apd 5280 feet .in 1 mile. .

-

- Suppose that khe gra\tltatl rce werg F @k/j Up. "Wodld is
ftlll be true that .m a s‘atelhte s WQtion, “the radiys’vec?;or

sweeps area out in a constant rate? , * ) . -t
- . ’ . ° « 7
L] .
~ * N ’ - . 2
. T ¢
- N
° v‘\- . N . . \ ¢
.
T s L 4 : R N
s e . ° -
o -,
' ;
. . N s . . - ... .
- o <
l"" - N
W 9. . “hg . -
. . S
-, N ‘
- .
- .
-t .
AR . .
'y L -
- ) t. - v, - .
r . .
[ L] . N
i . . " » . » - », d . - -
. .
- * . . 4.--';~ . .
- - .
. .
. - A .
-t . . M .
]
15

A

) wj,th v(0) = @&,., v'(9) = &

. S % APPRNDIX 1 s g "

the orl,glh then the ’équatglop of any gonic, sectiof in p6—

L]
e Q"

Iar coordinates is of the “form . .

. . N * °. F ‘ -
r= S B . : 0

. ‘1+ecos(e ta), -~ .

.The number e 1s called the ec entricity and the various

corilc sections are g].ven by- the, table %
e '
. e = 0: ‘circle

) 3 . X .
. 0 < ec< 1: ellapse’ /\\

. , g =+]1:

. ! -~ e> 1: hypel;bola .

parabola . v .

. The table is easy ‘to remember. If e < 1 then the
denomlngtor is never zero and r is boundg}»so we haye an
ellipse. If e = 1 then the denomlnator 1s zero prec1se1y
once as § trgverses a, complete rotatLogv the p01nt {r”e)
"Jumplng across, the open end ofvthe parabola at 1nf1n1ty
If e >, 1, then- L
branch -of the hyperbola to the other” each time.

. re e

. . . APPENDIX 2 ° oy

Ve

.
.
L]

Solutions .of Certain Differentiadl Equations. We want to

- ] ¢ -
[ 4 ' LN
N RS ' N ’ ‘
Conrcs 1n Polar Coordinates. If one af, thé fo’cié at .

is infindite twice "jumping from ene |, -

show that the differential equation, ¥ s~

* "v"’*v=$ : .

.

2 has arun - solution. P

Pl

’

Suppose v, and.v, are two solutlons and let h @ for u "’
function pulled out of a hat) be defined by - . -
L
h(e) = (vy - V)P ¢ (vp - V)R L -
Then ' - e - : '
a .%_h'(e) = (v = V) vy - V)t £v; - v;,)(v'x' -'v'z'.)
. . ' .ot %,
) NGRS CACR AN CARR Ol : )
' . . | . 16

R T B



LS

0 (Using * twice) ~~ * .. .

= (v - v;)ﬂ) - D]

so h is a constant. But h(0)
(v} - v;)2 0. Thus v, -y

0 means (v, - vz)2 +

LD
.

2 0. That is v, = v,.

Now one solution of the problem is (just plug it in)

- . K
Sy t .
= - —— 8 + a
. v(e). : D TR co‘s(‘ ) ‘
. with - . . ¢ - . ' °
: . -~ . ‘ _ D - ao .
" . . CO.t a = (1— .

1 . \

1
Since every solution of the differential equation satis-

"if a, #0. If a, = 0-take v(8) =D - (D - a,)cos 8. .

fies the extra conditions at 0 for some a, and ,, it is

.may not agree exactly with published tables of data,

.5~ DETAILED SOLUTIONS TQ EXERCISES .

. v

- *
-
Note that We are using rounded off data so that ‘these rs.\lts

A
] , ‘ .
Exercise 1. From (8) 8' = A/r® is constant. On a circle arclength
L3 . e A ~
= 0r so v = ds/dt = ré'. Now r" = 0 so ap = - r(6')% = -(v¥/r).

Compute the circumference of the circle in two ways. Then 2Wr = vT
’
and use thé*Third Law to write " : .

1

A

\v2' 2gr, 2

= AL 2m _4n’r K, _ 4n% L
i I e

= -47721”[;‘\;] il . |

Exercise 2. The f1rst integral is the usual ‘area integral for the

ellipse xz/a +y /b2 = 1. Let x = au to get the last integral. |,

% - of the form v = D.+ 8 Gos(8 + a). To‘ make 8 > 0 replale ’ " This integral computes the area of the unit circlé so is m. . R )
¥ a'by a + 7 sinée cos(e +a + @) = -cos(® + a) changes i . N . -
th sign of 8 . .ot Exercise 4. By (17), M = 41%a3/Gr?. Put into m, kg, sec. Then
e n . . e P ~ .
- . o . G=6.670 x 10-'', a = 1.495 x 10*} m, T = (365.25)(24) (3600) sec =
' 3.156 ¥ 107 sec. Thus M = 4m%(1.495)°10%%/(6.670)(3.156)2 x 10 =
' 1,986 x 10%° kg,
, . =
. . " Exercise 5. By (16), B = a(l - &%) = (1.495) x 10°(1 - (.1673)%),
' . - = 1.453 x 10°. Now put into (14). ! ) '
v . ¥ ’ v . Exercise 6. f(r) = -(Cm/rz).‘ At sea level -((‘le/'rz) = gm.
‘ . o ‘Writing everything in m and kg., Co= -gr? = (9. 807)(6.371 x 10 )z =
. ; . . . !
L. - ¢ . - . . 3.981 x 10%*. But nC = aMG so M = C/G™> 3.98L x 10'"/6. 670 10-“ A
T, o = 5.968 x 10%* kg. ’
- ‘o d -t = ! N ! T~ L
- . b ) . . Exercise 7. From v3/r = C/r¥®, v¥ = C/r, with C as in Exercise 6. )
Y : ' * But r = (6.371) X 10° + 100(1609.35)m, so v? = [\(3 981) x 0]/ ¢
! & 2 e - [6.532 x 10"] = 6095 x 10%. Thus v = 7.807 x 103 m/sec. \
. ) x - - - - Exercise 8. a) " Let w be the rate of fspm of the earth Then i i
. , v ' N w =-2¥/24(3600) = .727 x 10~* rad/sec. Thus v = wr and C/r® = v%/r .
- ) + - as,in Exercise 7 Tead to, r® = C/w? = 3,981 x 10™/(. 72752-x 10-% =
“ & ! 3 1
-, 75.32 %302 (m) 3, “Then r'= 4.223 x 10% m, = ’ y
' - . b) Alternately, usmg (17) r = GMT2/4‘n and the results of .
* . - Exerclse 6, . T
ll‘ v ' ’ e ' * “ar N
. - - ¢ . " Y
] £ ) s K . )
) 17 ) REEN b ) - 18
\)4 - , ) M \ ¢ R A M ' .
" EMC a 5 ’ ) lO\)




‘c“?, ‘. - - hd e N
* ] ¢ v -’ - s ’ .
o . ! .. . . ) )
< * N -
; 2y 2,42 ' L : .
= (6.670) x 10 (5-968) x 10 (24><36_00) /an : ANSWERS TQ MODEL EXAM
/ = 75, 27><1021 ) : . .
. . s s - 2 o
. 4.222 x 109 R 1. a) Fro.m the first law 8' = A/r%, so 8' is largest when r
. \ ; . is smallest. -
Exercise 9. Look at the derivation of (16). L - . N N i 2 V2
. ) . . b) V2 ~ o(g—s_JZ _ [dl“ 2 . rz [9—6'\2 = [g—g -3—2»]‘ + 1.2 [%%J
. e af= : 5(hax distance + min distance). . . ' dtj ZEJ dtJ
\ . N . . . -
The maximum distance’is (5.697 x 10° + 6.371 x .10°)m and the mnimun" - H_g_rlz R rzi' [_gﬁ‘]z - H%]z . rz:l [L]z .
v, . . . . t t r2) ' .
distancé 1s *(5.375 x 10 + 6.571 x 10°)m. Thus a = 6.925'x 0°m. R ;
Apply (17). ) ’ : . - Now a -’ °
\ - __ B - ‘ ) -
T? = 4n%a’/eM . . . . . ‘ . T T+ ecoso
= 4m2(6.925 x 10%)3/(6.670,x 10'“1(3.968x 102%) : ) ° s0 ; )
. w : ) : >
' = 32.94 x 10%sec?. - *“> 4gr  Besin® o
- . . , ‘ dé " (1 + ecosB)z * LA :
T = 5.739 x 103sec. (The listed period is 95.7 min.) ' ’ "e (_ K )' ‘
. L. : 2 . 4 Thus ! e
Exercise 10. From m{r" -r(8')°] = £(r) we get , .. a2 W g2 [
— 2 ! . .o . g 2 dgl® _ 2 2 502
mlr - 351 = £(0) , e [ e e eces ot dletsinto
- - T . . - Y ©
© 50 . . ¢ , l'l' .o . )
s : c. " ‘ = g7 (I +£" + 2ecos 6). ,
. ] » i ‘ . N .
mirtort - A2 :—5-] ~uf(¥)r' = 0. ) ¢ But . . N .
~ ® - A .
Notice that. ? - N T ' ecos @ =--:i -1 ’ . °
1 ' . ° -
. E[m(r—')2 ——]'fb mir! r" - )\2 :3] o0 . sd . o
e . ! . . 4 R \~ ) (ei.’._ 1))\2 . ZAZ <
o ] L ) E :
- d ’ . ) - .
-JEG( r) = G(l')l" = -f(r)r'. . « Hedall that B> 0, so v? is largest when r is smallest.
! s ! g . . . )
Y Thus A ' . L B . 2. a) The third law is T2 = kr®. Compute the distance travelled
. m(r )2 mA? . 6(r)] = - ) s R in one period two ways, vI = 2nr. Now eliminate T to get
. dt 272 2 !
: - vedl 1o : N
K ) . [ - . k 14 N
> This makes the bracket a_ cons)tant. Now replace X by r2@' “to get - ) . o
. . 1 . ) b o ' b) Centripetal acceleration must balance the inverse square
STty - @
3 n{(r')? "-'rzce')zl *.F(T) = constant” i : s acceleration. Thus * i
1-1' Q e . i . . . B Y
but . f . - LA, C
) S :s 2 . r rZ .
Go TG =GP =v : . . ‘
de” <. ) dt dt . ) . from which . -
o , ¢ . . N
: . GM .
soweget ) VZ=T' . 111
- it ; . N - A fo
- Q 7 mv2 + r) = constant. . ‘ . ' 20

-"'E lC N _j .. 19 o v‘ : -
Z*." : Y '
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Newton showed that Kepler's Laws follow from the Inverse Square

Law.
accsptable.

If.f‘(t) - -k

f(4000-5280) = .32,
.

thus,

[y
-

,.then’
A

»

.

-

, -

k = 32(5280)2(4000)2. ¢

.~

]

So 1f one accepts the’Iatter then kepler s Laws are also

r - ". . A -
Yes, the first law on the 'area swept out by the radius-vector

holds in any central force field.
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. Return to.
STUDENT FORM 1 ' EDC/UMAP

o \ : - . 55 Chapel St.

]

Request for Help

Newton,’ MA 02160

——

\-’_-_/

~

Description of nifficulty' ‘(Please be specific)

L4 A

Student:” If you have trouble with a specific part of this unit, please fill
_ . out this form and take it to your instructor for assistance. The information
" you give will help the author to revise the unit. . .
Your Name Unit No. B
Page
. : . Model Exam
. S i . '
. Upper ection « Problem No.*
OR - . OR . — | .|
. OnMiddle Paragraph . Text. oo
O Lower ) ‘ ﬁ . . 'Problem No.__j__
i P

N -

- Instggctor:'

(::) Correctes_errprs‘in materials. List corrections here:

o (::) Gave student better explanation, example, or procedure than ip unit.

Please indicate ypur.resolution of .the difficulty in this box:

¢

B
Y-
S

\ L ¢

' -
“d \

-

.

Give brief outline of your addition. here:

. . . ) -‘?
(::) Assisted student in acquiring general learning and problem—solving
skills (not using e

"e

L
13

ples from this unit.)

T

- L -

o~y

5

s

Instructor's Signature

Please use reverse if necessary.
k, l

Ll




. - . S Return to:
STUDENT FORM 2 N EDC/UMAP
) . : ‘ " 55 Chapel St.
{ N . Unit Questionnaire Newton; MA 02160
Name 3 ' ' Unit- Ne. ' "Date . '
T . Institution "~ \ . Course No. ]

Check the choice for each question that comes clodkst to your personal opinion.

1. How useful was the amount of detail in the unit? t o : '%

Not enough detail to understand the unit
¢ Unit would have been clearer with more detail .
— . ___ _Appropriate amount of detail . L -
Unit was occasionally too detailed, but this was not distracting
Too much detail; I-was often distracted

t - t

-~

S - 2. How helpful were the problem answers? , ‘ ‘

- N Sample solutions were too.brief; I could not do the inteimediate steps
' Sufficient information was given to soWe the probléms
Sampie solutions were too detailed; I didn't need them - N

|

3. Except for fulfilling the prereﬁhisites, how much did you use other sources (for
example, instructor, friends, or oth& books) in order to understand the unit?

A Lot Somewhat A Little T Not at all
. - . ' ' . e
“ 4. How long was this unit in comparison to the amount of time you generally spepd on
a lesson (lecture and homework assignment) in a typical math or science course?

. Much, Somewhat About Somewhat . Much
Longer Longer the Same Shorter -Shorter

5. Were any of the following parts of the unit'confusinggpr distracting? (Check
as many as apply ) . N . .

Prerequisites .o

. Statement of skills and concepts (objectives)
Paragraph headings . ) - ,
. Examples - c o —

Special Assistance Supplement (if present) . . ‘
Other please explain o ‘ . :

N “

lll

l I

6. Were any of the following parts of the unit;particularly helpful? (Check as many
. as apply.) . .
: b Prerequisites .

" Statement of skills and concepts (objectives) . :
o .i Examples

' . Problems ) .

3 Paragraph headings _
*Table of Contents *
___.Special Assistance Supplement (if present)

EOther please explain

as)

l'

L

- .Please describe anything in the unit that you did not particularly like.

"1

- P ‘. -
L 4
.

'\% . ' e
Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.) - .

Q ‘ . = . i; R - .




